This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Kyiv City MO Seniors 2003+ geometry, 2017.11.5

In the acute isosceles triangle $ABC$ the altitudes $BB_1$ and $CC_1$ are drawn, which intersect at the point $H$. Let $L_1$ and $L_2$ be the feet of the angle bisectors of the triangles $B_1AC_1$ and $B_1HC_1$ drawn from vertices $A$ and $H$, respectively. The circumscribed circles of triangles $AHL_1$ and $AHL_2$ intersects the line $B_1C_1$ for the second time at points $P$ and $Q$, respectively. Prove that points $B, C, P$ and $Q$ lie on the same circle. (M. Plotnikov, D. Hilko)

2017 Czech-Polish-Slovak Junior Match, 2

Decide if exists a convex hexagon with all sides longer than $1$ and all nine of its diagonals are less than $2$ in length.

1997 All-Russian Olympiad, 3

The lateral sides of a box with base $a\times b$ and height $c$ (where $a$; $b$;$ c$ are natural numbers) are completely covered without overlap by rectangles whose edges are parallel to the edges of the box, each containing an even number of unit squares. (Rectangles may cross the lateral edges of the box.) Prove that if $c$ is odd, then the number of possible coverings is even. [i]D. Karpov, C. Gukshin, D. Fon-der-Flaas[/i]

2014 Turkey MO (2nd round), 3

Let $D, E, F$ be points on the sides $BC, CA, AB$ of a triangle $ABC$, respectively such that the lines $AD, BE, CF$ are concurrent at the point $P$. Let a line $\ell$ through $A$ intersect the rays $[DE$ and $[DF$ at the points $Q$ and $R$, respectively. Let $M$ and $N$ be points on the rays $[DB$ and $[DC$, respectively such that the equation \[ \frac{QN^2}{DN}+\frac{RM^2}{DM}=\frac{(DQ+DR)^2-2\cdot RQ^2+2\cdot DM\cdot DN}{MN} \] holds. Show that the lines $AD$ and $BC$ are perpendicular to each other.

2021 Taiwan TST Round 3, G

Let $ABC$ be a triangle with $AB<AC$, and let $I_a$ be its $A$-excenter. Let $D$ be the projection of $I_a$ to $BC$. Let $X$ be the intersection of $AI_a$ and $BC$, and let $Y,Z$ be the points on $AC,AB$, respectively, such that $X,Y,Z$ are on a line perpendicular to $AI_a$. Let the circumcircle of $AYZ$ intersect $AI_a$ again at $U$. Suppose that the tangent of the circumcircle of $ABC$ at $A$ intersects $BC$ at $T$, and the segment $TU$ intersects the circumcircle of $ABC$ at $V$. Show that $\angle BAV=\angle DAC$. [i]Proposed by usjl.[/i]

2023 Dutch BxMO TST, 4

In a triangle $\triangle ABC$ with $\angle ABC < \angle BCA$, we define $K$ as the excenter with respect to $A$. The lines $AK$ and $BC$ intersect in a point $D$. Let $E$ be the circumcenter of $\triangle BKC$. Prove that \[\frac{1}{|KA|} = \frac{1}{|KD|} + \frac{1}{|KE|}.\]

2021 CMIMC, 12

Tags: geometry
Let $\triangle ABC$ be a triangle, and let $l$ be the line passing through its incenter and centroid. Assume that $B$ and $C$ lie on the same side of $l$, and that the distance from $B$ to $l$ is twice the distance from $C$ to $l$. Suppose also that the length $BA$ is twice that of $CA$. If $\triangle ABC$ has integer side lengths and is as small as possible, what is $AB^2+BC^2+CA^2$? [i]Proposed by Thomas Lam[/i]

2009 Baltic Way, 11

Let $M$ be the midpoint of the side $AC$ of a triangle $ABC$, and let $K$ be a point on the ray $BA$ beyond $A$. The line $KM$ intersects the side $BC$ at the point $L$. $P$is the point on the segment $BM$ such that $PM$ is the bisector of the angle $LPK$. The line $\ell$ passes through $A$ and is parallel to $BM$. Prove that the projection of the point $M$ onto the line $\ell$ belongs to the line $PK$.

2014 Harvard-MIT Mathematics Tournament, 9

Compute the side length of the largest cube contained in the region \[ \{(x, y, z) : x^2+y^2+z^2 \le 25 \text{ and } x, y \ge 0 \} \] of three-dimensional space.

2004 Paraguay Mathematical Olympiad, 3

In an equilateral triangle $ABC$, whose side is $4$, the line perpendicular to $AB$ is drawn through the point $ A$, the line perpendicular to $BC$ through point $ B$ and the line perpendicular to $CA$ through point $C$. These three lines determine another triangle. Calculate the perimeter of this triangle

2009 Sharygin Geometry Olympiad, 21

The opposite sidelines of quadrilateral $ ABCD$ intersect at points $ P$ and $ Q$. Two lines passing through these points meet the side of $ ABCD$ in four points which are the vertices of a parallelogram. Prove that the center of this parallelogram lies on the line passing through the midpoints of diagonals of $ ABCD$.

2023 Baltic Way, 14

Let $ABC$ be a triangle with centroid $G$. Let $D, E, F$ be the circumcenters of triangles $BCG, CAG, ABG$. Let $X$ be the intersection of the perpendiculars from $E$ to $AB$ and from $F$ to $AC$. Prove that $DX$ bisects $EF$.

2018 Ecuador Juniors, 4

Given a positive integer $n > 1$ and an angle $\alpha < 90^o$, Jaime draws a spiral $OP_0P_1...P_n$ of the following form (the figure shows the first steps): $\bullet$ First draw a triangle $OP_0P_1$ with $OP_0 = 1$, $\angle P_1OP_0 = \alpha$ and $P_1P_0O = 90^o$ $\bullet$ then for every integer $1 \le i \le n$ draw the point $P_{i+1}$ so that $\angle P_{i+1}OP_i = \alpha$, $\angle P_{i+1}P_iO = 90^o$ and $P_{i-1}$ and $P_{i+1}$ are in different half-planes with respect to the line $OP_i$ [img]https://cdn.artofproblemsolving.com/attachments/f/2/aa3913989dac1cf04f2b42b5d630b2e096dcb6.png[/img] a) If $n = 6$ and $\alpha = 30^o$, find the length of $P_0P_n$. b) If $n = 2018$ and $\alpha= 45^o$, find the length of $P_0P_n$.

2016 USA TSTST, 6

Tags: geometry
Let $ABC$ be a triangle with incenter $I$, and whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$, respectively. Let $K$ be the foot of the altitude from $D$ to $\overline{EF}$. Suppose that the circumcircle of $\triangle AIB$ meets the incircle at two distinct points $C_1$ and $C_2$, while the circumcircle of $\triangle AIC$ meets the incircle at two distinct points $B_1$ and $B_2$. Prove that the radical axis of the circumcircles of $\triangle BB_1B_2$ and $\triangle CC_1C_2$ passes through the midpoint $M$ of $\overline{DK}$. [i]Proposed by Danielle Wang[/i]

2014 Hanoi Open Mathematics Competitions, 2

How many diagonals does $11$-sided convex polygon have?

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.

2012 Albania National Olympiad, 5

Let $ABC$ be a triangle where $AC\neq BC$. Let $P$ be the foot of the altitude taken from $C$ to $AB$; and let $V$ be the orthocentre, $O$ the circumcentre of $ABC$, and $D$ the point of intersection between the radius $OC$ and the side $AB$. The midpoint of $CD$ is $E$. a) Prove that the reflection $V'$ of $V$ in $AB$ is on the circumcircle of the triangle $ABC$. b) In what ratio does the segment $EP$ divide the segment $OV$?

2009 Tournament Of Towns, 2

A non-square rectangle is cut into $N$ rectangles of various shapes and sizes. Prove that one can always cut each of these rectangles into two rectangles so that one can construct a square and rectangle, each figure consisting of $N$ pieces. [i](6 points)[/i]

2011 Morocco National Olympiad, 4

Let $ABCD$ be a convex quadrilateral with angles $\angle ABC$ and $\angle BCD$ not less than $120^{\circ}$. Prove that \[AC + BD> AB+BC+CD\]

2013 India National Olympiad, 5

In an acute triangle $ABC,$ let $O,G,H$ be its circumcentre, centroid and orthocenter. Let $D\in BC, E\in CA$ and $OD\perp BC, HE\perp CA.$ Let $F$ be the midpoint of $AB.$ If the triangles $ODC, HEA, GFB$ have the same area, find all the possible values of $\angle C.$

2016 Korea Junior Math Olympiad, 6

Tags: geometry
circle $O_1$ is tangent to $AC$, $BC$(side of triangle $ABC$) at point $D, E$. circle $O_2$ include $O_1$, is tangent to $BC$, $AB$(side of triangle $ABC$) at point $E, F$ The tangent of $O_2$ at $P(DE \cap O_2, P \neq E)$ meets $AB$ at $Q$. A line passing through $O_1$(center of $O_1$) and parallel to $BO_2$($O_2$ is also center of $O_2$) meets $BC$ at $G$, $EQ \cap AC=K, KG \cap EF=L$, $EO_2$ meets circle $O_2$ at $N(\neq E)$, $LO_2 \cap FN=M$. IF $N$ is a middle point of $FM$, prove that $BG=2EG$

2013 Romania National Olympiad, 2

A die is an unitary cube with numbers from $1$ to $6$ written on its faces, so that each number appears once and the sum of the numbers on any two opposite faces is $7$. We construct a large $3 \cdot 3 \cdot 3$ cube using$ 27$ dice. Find all possible values of the sum of numbers which can be seen on the faces of the large cube.

V Soros Olympiad 1998 - 99 (Russia), 9.2

Tags: geometry
There are two equal non-intersecting circles on a plane. Two lines were drawn. Each of the lines intersects the circles at four points so that the three segments formed on each of the lines are equal (segments with ends at adjacent points of intersection are considered). For one line these segments have length $a$, for the other they have length $b$ ($a < b$). Find the radius of the circles.

1999 Chile National Olympiad, 6

Prove that there are infinite pairs of non-congruent triangles that have the same angles and two of their equal sides. Develop an algorithm or rule to obtain these pairs of triangles and indicate at least one pair that satisfies the asserted.

2012 Online Math Open Problems, 11

Let $ABCD$ be a rectangle. Circles with diameters $AB$ and $CD$ meet at points $P$ and $Q$ inside the rectangle such that $P$ is closer to segment $BC$ than $Q$. Let $M$ and $N$ be the midpoints of segments $AB$ and $CD$. If $\angle MPN = 40^\circ$, find the degree measure of $\angle BPC$. [i]Ray Li.[/i]