Found problems: 25757
2002 Moldova National Olympiad, 4
Let the triangle $ ADB_1$ s.t. $ m(\angle DAB_1)\ne 90^\circ$.On the sides of this triangle externally are constructed the squares $ ABCD$
and $ AB_1C_1D_1$ with centers $ O_1$ and $ O_2$, respectively.Prove that the circumcircles of the triangles $ BAB_1$, $ DAD_1$ and
$ O_1AO_2$ share a common point, that differs from $ A$.
1971 IMO Shortlist, 4
We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.
2005 National High School Mathematics League, 4
In cube $ABCD-A_1B_1C_1D_1$, draw a plane $\alpha$ perpendicular to line $AC'$, and $\alpha$ has intersections with any surface of the cube. The area of the cross section is $S$, the perimeter of the cross section is $l$, then
$\text{(A)}$ The value of $S$ is fixed, but the value of $l$ is not fixed.
$\text{(B)}$ The value of $S$ is not fixed, but the value of $l$ is fixed.
$\text{(C)}$ The value of $S$ is fixed, the value of $l$ is fixed as well.
$\text{(D)}$ The value of $S$ is not fixed, the value of $l$ is not fixed either.
2003 National Olympiad First Round, 29
In right triangle $ABC$, let $D$ be the midpoint of hypotenuse $[AB]$, circumradius be $\dfrac 52$ and $|BC|=3$. What is the distance between circumcenter of $\triangle ACD$ and incenter of $\triangle BCD$?
$
\textbf{(A)}\ \dfrac {29}{2}
\qquad\textbf{(B)}\ 3
\qquad\textbf{(C)}\ \dfrac 52
\qquad\textbf{(D)}\ \dfrac{5\sqrt{34}}{12}
\qquad\textbf{(E)}\ 2\sqrt 2
$
2009 AMC 10, 12
Distinct points $ A$, $ B$, $ C$, and $ D$ lie on a line, with $ AB\equal{}BC\equal{}CD\equal{}1$. Points $ E$ and $ F$ lie on a second line, parallel to the first, with $ EF\equal{}1$. A triangle with positive area has three of the six points as its vertices. How many possible values are there for the area of the triangle?
$ \textbf{(A)}\ 3 \qquad
\textbf{(B)}\ 4 \qquad
\textbf{(C)}\ 5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 7$
2022 Thailand Online MO, 8
Let $ABCD$ be a convex quadrilateral with $AD = BC$, $\angle BAC+\angle DCA = 180^{\circ}$, and $\angle BAC \neq 90^{\circ}.$ Let $O_1$ and $O_2$ be the circumcenters of triangles $ABC$ and $CAD$, respectively. Prove that one intersection point of the circumcircles of triangles $O_1BC$ and $O_2AD$ lies on $AC$.
1998 Hong kong National Olympiad, 2
The underside of a pyramid is a convex nonagon , paint all the diagonals of the nonagon and all the ridges of the pyramid into white and black , prove : there exists a triangle ,the colour of its three sides are the same . ( PS:the sides of the nonagon is not painted. )
2002 Estonia Team Selection Test, 4
Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.
1952 Kurschak Competition, 1
A circle $C$ touches three pairwise disjoint circles whose centers are collinear and none of which contains any of the others. Show that its radius must be larger than the radius of the middle of the three circles.
2010 IMO Shortlist, 4
Given a triangle $ABC$, with $I$ as its incenter and $\Gamma$ as its circumcircle, $AI$ intersects $\Gamma$ again at $D$. Let $E$ be a point on the arc $BDC$, and $F$ a point on the segment $BC$, such that $\angle BAF=\angle CAE < \dfrac12\angle BAC$. If $G$ is the midpoint of $IF$, prove that the meeting point of the lines $EI$ and $DG$ lies on $\Gamma$.
[i]Proposed by Tai Wai Ming and Wang Chongli, Hong Kong[/i]
2009 Belarus Team Selection Test, 2
Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic.
[i]Proposed by John Cuya, Peru[/i]
2011 239 Open Mathematical Olympiad, 4
Rombus ABCD with acute angle $B$ is given. $O$ is a circumcenter of $ABC$. Point $P$ lies on line $OC$ beyond $C$. $PD$ intersect the line that goes through $O$ and parallel to $AB$ at $Q$. Prove that $\angle AQO=\angle PBC$.
2013 Online Math Open Problems, 26
Let $ABC$ be a triangle with $AB=13$, $AC=25$, and $\tan A = \frac{3}{4}$. Denote the reflections of $B,C$ across $\overline{AC},\overline{AB}$ by $D,E$, respectively, and let $O$ be the circumcenter of triangle $ABC$. Let $P$ be a point such that $\triangle DPO\sim\triangle PEO$, and let $X$ and $Y$ be the midpoints of the major and minor arcs $\widehat{BC}$ of the circumcircle of triangle $ABC$. Find $PX \cdot PY$.
[i]Proposed by Michael Kural[/i]
2022 Princeton University Math Competition, 14
Let $\vartriangle ABC$ be a triangle. Let $Q$ be a point in the interior of $\vartriangle ABC$, and let $X, Y,Z$ denote the feet of the altitudes from $Q$ to sides $BC$, $CA$, $AB$, respectively. Suppose that $BC = 15$, $\angle ABC = 60^o$, $BZ = 8$, $ZQ = 6$, and $\angle QCA = 30^o$. Let line $QX$ intersect the circumcircle of $\vartriangle XY Z$ at the point $W\ne X$. If the ratio $\frac{ WY}{WZ}$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$, find $p + q$.
2018 Caucasus Mathematical Olympiad, 7
In an acute-angled triangle $ABC$, the altitudes from $A,B,C$ meet the sides of $ABC$ at $A_1$, $B_1$, $C_1$, and meet the circumcircle of $ABC$ at $A_2$, $B_2$, $C_2$, respectively. Line $A_1 C_1$ intersects the circumcircles of triangles $AC_1 C_2$ and $CA_1 A_2$ at points $P$ and $Q$ ($Q\neq A_1$, $P\neq C_1$). Prove that the circle $PQB_1$ touches the line $AC$.
2020 MBMT, 26
Let $\triangle MBT$ be a triangle with $\overline{MB} = 4$ and $\overline{MT} = 7$. Furthermore, let circle $\omega$ be a circle with center $O$ which is tangent to $\overline{MB}$ at $B$ and $\overline{MT}$ at some point on segment $\overline{MT}$. Given $\overline{OM} = 6$ and $\omega$ intersects $ \overline{BT}$ at $I \neq B$, find the length of $\overline{TI}$.
[i]Proposed by Chad Yu[/i]
Estonia Open Junior - geometry, 2010.2.3
On the side $BC$ of the equilateral triangle $ABC$, choose any point $D$, and on the line $AD$, take the point $E$ such that $| B A | = | BE |$. Prove that the size of the angle $AEC$ is of does not depend on the choice of point $D$, and find its size.
2014 Austria Beginners' Competition, 4
Consider a triangle $ABC$. The midpoints of the sides $BC, CA$, and $AB$ are denoted by $D, E$, and $F$, respectively. Assume that the median $AD$ is perpendicular to the median $BE$ and that their lengths are given by $AD = 18$ and $BE = 13.5$. Compute the length of the third median $CF$.
(K. Czakler, Vienna)
2008 Romania National Olympiad, 2
Let $ a,b,c$ be 3 complex numbers such that \[ a|bc| \plus{} b|ca| \plus{} c|ab| \equal{} 0.\] Prove that \[ |(a\minus{}b)(b\minus{}c)(c\minus{}a)| \geq 3\sqrt 3 |abc|.\]
MOAA Gunga Bowls, 2018
[u]Set 7[/u]
[b]p19.[/b] Let circles $\omega_1$ and $\omega_2$, with centers $O_1$ and $O_2$, respectively, intersect at $X$ and $Y$ . A lies on $\omega_1$ and $B$ lies on $\omega_2$ such that $AO_1$ and $BO_2$ are both parallel to $XY$, and $A$ and $B$ lie on the same side of $O_1O_2$. If $XY = 60$, $\angle XAY = 45^o$, and $\angle XBY = 30^o$, then the length of $AB$ can be expressed in the form $\sqrt{a - b\sqrt2 + c\sqrt3}$, where $a, b, c$ are positive integers. Determine $a + b + c$.
[b]p20.[/b] If $x$ is a positive real number such that $x^{x^2}= 2^{80}$, find the largest integer not greater than $x^3$.
[b]p21.[/b] Justin has a bag containing $750$ balls, each colored red or blue. Sneaky Sam takes out a random number of balls and replaces them all with green balls. Sam notices that of the balls left in the bag, there are $15$ more red balls than blue balls. Justin then takes out $500$ of the balls chosen randomly. If $E$ is the expected number of green balls that Justin takes out, determine the greatest integer less than or equal to $E$.
[u]Set 8[/u]
These three problems are interdependent; each problem statement in this set will use the answers to the other two problems in this set. As such, let the positive integers $A, B, C$ be the answers to problems $22$, $23$, and $24$, respectively, for this set.
[b]p22.[/b] Let $WXYZ$ be a rectangle with $WX =\sqrt{5B}$ and $XY =\sqrt{5C}$. Let the midpoint of $XY$ be $M$ and the midpoint of $YZ$ be $N$. If $XN$ and $W Y$ intersect at $P$, determine the area of $MPNY$ .
[b]p23.[/b] Positive integers $x, y, z$ satisfy $$xy \equiv A \,\, (mod 5)$$
$$yz \equiv 2A + C\,\, (mod 7)$$
$$zx \equiv C + 3 \,\, (mod 9).$$ (Here, writing $a \equiv b \,\, (mod m)$ is equivalent to writing $m | a - b$.)
Given that $3 \nmid x$, $3 \nmid z$, and $9 | y$, find the minimum possible value of the product $xyz$.
[b]p24.[/b] Suppose $x$ and $y$ are real numbers such that $$x + y = A$$
$$xy =\frac{1}{36}B^2.$$ Determine $|x - y|$.
[u]Set 9[/u]
[b]p25. [/b]The integer $2017$ is a prime which can be uniquely represented as the sum of the squares of two positive integers: $$9^2 + 44^2 = 2017.$$ If $N = 2017 \cdot 128$ can be uniquely represented as the sum of the squares of two positive integers $a^2 +b^2$, determine $a + b$.
[b]p26.[/b] Chef Celia is planning to unveil her newest creation: a whole-wheat square pyramid filled with maple syrup. She will use a square flatbread with a one meter diagonal and cut out each of the five polygonal faces of the pyramid individually. If each of the triangular faces of the pyramid are to be equilateral triangles, the largest volume of syrup, in cubic meters, that Celia can enclose in her pyramid can be expressed as $\frac{a-\sqrt{b}}{c}$ where $a, b$ and $c$ are the smallest possible possible positive integers. What is $a + b + c$?
[b]p27.[/b] In the Cartesian plane, let $\omega$ be the circle centered at $(24, 7)$ with radius $6$. Points $P, Q$, and $R$ are chosen in the plane such that $P$ lies on $\omega$, $Q$ lies on the line $y = x$, and $R$ lies on the $x$-axis. The minimum possible value of $PQ+QR+RP$ can be expressed in the form $\sqrt{m}$ for some integer $m$. Find m.
[u]Set 10[/u]
[i]Deja vu?[/i]
[b]p28. [/b] Let $ABC$ be a triangle with incircle $\omega$. Let $\omega$ intersect sides $BC$, $CA$, $AB$ at $D, E, F$, respectively. Suppose $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ is $K$ and the area of $DEF$ is $\frac{m}{n}\cdot K$, where $m$ and $n$ are relatively prime positive integers, then compute $m + n$.
[b]p29.[/b] Sebastian is playing the game Split! again, but this time in a three dimensional coordinate system. He begins the game with one token at $(0, 0, 0)$. For each move, he is allowed to select a token on any point $(x, y, z)$ and take it off, replacing it with three tokens, one at $(x + 1, y, z)$, one at $(x, y + 1, z)$, and one at $(x, y, z + 1)$ At the end of the game, for a token on $(a, b, c)$, it is assigned a score $\frac{1}{2^{a+b+c}}$ . These scores are summed for his total score. If the highest total score Sebastian can get in $100$ moves is $m/n$, then determine $m + n$.
[b]p30.[/b] Determine the number of positive $6$ digit integers that satisfy the following properties:
$\bullet$ All six of their digits are $1, 5, 7$, or $8$,
$\bullet$ The sum of all the digits is a multiple of $5$.
[u]Set 11[/u]
[b]p31.[/b] The triangular numbers are defined as $T_n =\frac{n(n+1)}{2}$. We also define $S_n =\frac{n(n+2)}{3}$. If the sum $$\sum_{i=16}^{32} \left(\frac{1}{T_i}+\frac{1}{S_i}\right)= \left(\frac{1}{T_{16}}+\frac{1}{S_{16}}\right)+\left(\frac{1}{T_{17}}+\frac{1}{S_{17}}\right)+...+\left(\frac{1}{T_{32}}+\frac{1}{S_{32}}\right)$$ can be written in the form $a/b$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$, then find $a + b$.
[b]p32.[/b] Farmer Will is considering where to build his house in the Cartesian coordinate plane. He wants to build his house on the line $y = x$, but he also has to minimize his travel time for his daily trip to his barnhouse at $(24, 15)$ and back. From his house, he must first travel to the river at $y = 2$ to fetch water for his animals. Then, he heads for his barnhouse, and promptly leaves for the long strip mall at the line $y =\sqrt3 x$ for groceries, before heading home. If he decides to build his house at $(x_0, y_0)$ such that the distance he must travel is minimized, $x_0$ can be written in the form $\frac{a\sqrt{b}-c}{d}$ , where $a, b, c, d$ are positive integers, $b$ is not divisible by the square of a prime, and $gcd(a, c, d) = 1$. Compute $a+b+c+d$.
[b]p33.[/b] Determine the greatest positive integer $n$ such that the following two conditions hold:
$\bullet$ $n^2$ is the difference of consecutive perfect cubes;
$\bullet$ $2n + 287$ is the square of an integer.
[u]Set 12[/u]
The answers to these problems are nonnegative integers that may exceed $1000000$. You will be awarded points as described in the problems.
[b]p34.[/b] The “Collatz sequence” of a positive integer n is the longest sequence of distinct integers $(x_i)_{i\ge 0}$ with $x_0 = n$ and $$x_{n+1} =\begin{cases} \frac{x_n}{2} & if \,\, x_n \,\, is \,\, even \\ 3x_n + 1 & if \,\, x_n \,\, is \,\, odd \end{cases}.$$ It is conjectured that all Collatz sequences have a finite number of elements, terminating at $1$. This has been confirmed via computer program for all numbers up to $2^{64}$. There is a unique positive integer $n < 10^9$ such that its Collatz sequence is longer than the Collatz sequence of any other positive integer less than $10^9$. What is this integer $n$?
An estimate of $e$ gives $\max\{\lfloor 32 - \frac{11}{3}\log_{10}(|n - e| + 1)\rfloor, 0\}$ points.
[b]p35.[/b] We define a graph $G$ as a set $V (G)$ of vertices and a set $E(G)$ of distinct edges connecting those vertices. A graph $H$ is a subgraph of $G$ if the vertex set $V (H)$ is a subset of $V (G)$ and the edge set $E(H)$ is a subset of $E(G)$. Let $ex(k, H)$ denote the maximum number of edges in a graph with $k$ vertices without a subgraph of $H$. If $K_i$ denotes a complete graph on $i$ vertices, that is, a graph with $i$ vertices and all ${i \choose 2}$ edges between them present, determine $$n =\sum_{i=2}^{2018} ex(2018, K_i).$$
An estimate of $e$ gives $\max\{\lfloor 32 - 3\log_{10}(|n - e| + 1)\rfloor, 0\}$ points.
[b]p36.[/b] Write down an integer between $1$ and $100$, inclusive. This number will be denoted as $n_i$ , where your Team ID is $i$. Let $S$ be the set of Team ID’s for all teams that submitted an answer to this problem. For every ordered triple of distinct Team ID’s $(a, b, c)$ such that a, b, c ∈ S, if all roots of the polynomial $x^3 + n_ax^2 + n_bx + n_c$ are real, then the teams with ID’s $a, b, c$ will each receive one virtual banana.
If you receive $v_b$ virtual bananas in total and $|S| \ge 3$ teams submit an answer to this problem, you will be awarded $$\left\lfloor \frac{32v_b}{3(|S| - 1)(|S| - 2)}\right\rfloor$$ points for this problem. If $|S| \le 2$, the team(s) that submitted an answer to this problem will receive $32$ points for this problem.
PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777264p24369138]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Taiwan TST Round 1, 4
Two line $BC$ and $EF$ are parallel. Let $D$ be a point on segment $BC$ different from $B$,$C$. Let $I$ be the intersection of $BF$ ans $CE$. Denote the circumcircle of $\triangle CDE$ and $\triangle BDF$ as $K$,$L$. Circle $K$,$L$ are tangent with $EF$ at $E$,$F$,respectively. Let $A$ be the other intersection of circle $K$ and $L$. Let $DF$ and circle $K$ intersect again at $Q$, and $DE$ and circle $L$ intersect again at $R$. Let $EQ$ and $FR$ intersect at $M$.\\
Prove that $I$, $A$, $M$ are collinear.
2023 Yasinsky Geometry Olympiad, 2
Quadrilateral $ABCD$ is inscribed in a circle of radius $R$, and also circumscribed around a circle of radius $r$. It is known that $\angle ADB = 45^o$. Find the area of triangle $AIB$, where point $I$ is the center of the circle inscribed in $ABCD$.
(Hryhoriy Filippovskyi)
2005 Iran MO (3rd Round), 5
Suppose $a,b,c \in \mathbb R^+$and \[\frac1{a^2+1}+\frac1{b^2+1}+\frac1{c^2+1}=2\]
Prove that $ab+ac+bc\leq \frac32$
2012 Turkey MO (2nd round), 2
Let $ABC$ be a isosceles triangle with $AB=AC$ an $D$ be the foot of perpendicular of $A$. $P$ be an interior point of triangle $ADC$ such that $m(APB)>90$ and $m(PBD)+m(PAD)=m(PCB)$.
$CP$ and $AD$ intersects at $Q$, $BP$ and $AD$ intersects at $R$. Let $T$ be a point on $[AB]$ and $S$ be a point on $[AP$ and not belongs to $[AP]$ satisfying $m(TRB)=m(DQC)$ and $m(PSR)=2m(PAR)$. Show that $RS=RT$
2020 South East Mathematical Olympiad, 2
In a scalene triangle $\Delta ABC$, $AB<AC$, $PB$ and $PC$ are tangents of the circumcircle $(O)$ of $\Delta ABC$. A point $R$ lies on the arc $\widehat{AC}$(not containing $B$), $PR$ intersects $(O)$ again at $Q$. Suppose $I$ is the incenter of $\Delta ABC$, $ID \perp BC$ at $D$, $QD$ intersects $(O)$ again at $G$. A line passing through $I$ and perpendicular to $AI$ intersects $AG,AC$ at $M,N$, respectively. $S$ is the midpoint of arc $\widehat{AR}$, and$SN$ intersects $(O)$ again at $T$.
Prove that, if $AR \parallel BC$, then $M,B,T$ are collinear.