Found problems: 25757
2020 Regional Olympiad of Mexico West, 6
Let \( M \) be the midpoint of side \( BC \) of a scalene triangle \( ABC \). The circle passing through \( A \), \( B \) and \( M \) intersects side \( AC \) again at \( D \). The circle passing through \( A \), \( C \) and \( M \) cuts side \( AB \) again at \( E \). Let \( O \) be the circumcenter of triangle \( ADE \). Prove that \( OB=OC \).
2002 AIME Problems, 11
Let $ABCD$ and $BCFG$ be two faces of a cube with $AB=12.$ A beam of light emanates from vertex $A$ and reflects off face $BCFG$ at point $P,$ which is 7 units from $\overline{BG}$ and 5 units from $\overline{BC}.$ The beam continues to be reflected off the faces of the cube. The length of the light path from the time it leaves point $A$ until it next reaches a vertex of the cube is given by $m\sqrt{n},$ where $m$ and $n$ are integers and $n$ is not divisible by the square of any prime. Find $m+n.$
2016 China Girls Math Olympiad, 7
In acute triangle $ABC, AB<AC$, $I$ is its incenter, $D$ is the foot of perpendicular from $I$ to $BC$, altitude $AH$ meets $BI,CI$ at $P,Q$ respectively. Let $O$ be the circumcenter of $\triangle IPQ$, extend $AO$ to meet $BC$ at $L$. Circumcircle of $\triangle AIL$ meets $BC$ again at $N$. Prove that $\frac{BD}{CD}=\frac{BN}{CN}$.
1969 AMC 12/AHSME, 22
Let $K$ be the measure of the area bounded by the $x$-axis, the line $x=8$, and the curve defined by \[f=\{(x,y)\,|\, y=x\text{ when }0\leq x\leq 5,\,y=2x-5\text{ when }5\leq x\leq 8\}.\] Then $K$ is:
$\textbf{(A) }21.5\qquad
\textbf{(B) }36.4\qquad
\textbf{(C) }36.5\qquad
\textbf{(D) }44\qquad$
$\textbf{ (E) }\text{less than 44 but arbitrarily close to it.}$
2012 Hitotsubashi University Entrance Examination, 4
In the $xyz$-plane given points $P,\ Q$ on the planes $z=2,\ z=1$ respectively. Let $R$ be the intersection point of the line $PQ$ and the $xy$-plane.
(1) Let $P(0,\ 0,\ 2)$. When the point $Q$ moves on the perimeter of the circle with center $(0,\ 0,\ 1)$ , radius 1 on the plane $z=1$,
find the equation of the locus of the point $R$.
(2) Take 4 points $A(1,\ 1,\ 1) , B(1,-1,\ 1), C(-1,-1,\ 1)$ and $D(-1,\ 1,\ 1)$ on the plane $z=2$. When the point $P$ moves on the perimeter of the circle with center $(0,\ 0,\ 2)$ , radius 1 on the plane $z=2$ and the point $Q$ moves on the perimeter of the square $ABCD$, draw the domain swept by the point $R$ on the $xy$-plane, then find the area.
2017 HMNT, 8
[b]U[/b]ndecillion years ago in a galaxy far, far away, there were four space stations in the three-dimensional space, each pair spaced 1 light year away from each other. Admiral Ackbar wanted to establish a base somewhere in space such that the sum of squares of the distances from the base to each of the stations does not exceed 15 square light years. (The sizes of the space stations and the base are negligible.) Determine the volume, in cubic light years, of the set of all possible locations for the Admiral’s base.
2025 Poland - Second Round, 3
Let $P$ be a point inside an acute triangle $ABC$ such that $\angle BPC=90^\circ$. We build triangles $AQB$ and $ARC$, outside of the triangle $ABC$, such that $\angle ABQ = \angle PBC$, $\angle QAB = \angle PAC$, $\angle RCA = \angle PCB$, and $\angle CAR = \angle BAP$. Prove that $P$, $Q$, $R$ are collinear.
2024 Bulgarian Autumn Math Competition, 12.2
Let $ABC$ be a triangle and let $X$ be a point in its interior. Point $S_A$ is the midpoint of arc $BC$ containing $X$ of the circumcircle of $BCX$. $S_B$ and $S_C$ are defined similarly. Prove that $S_A,S_B,S_C$ and $X$ are concyclic.
2004 USA Team Selection Test, 4
Let $ABC$ be a triangle. Choose a point $D$ in its interior. Let $\omega_1$ be a circle passing through $B$ and $D$ and $\omega_2$ be a circle passing through $C$ and $D$ so that the other point of intersection of the two circles lies on $AD$. Let $\omega_1$ and $\omega_2$ intersect side $BC$ at $E$ and $F$, respectively. Denote by $X$ the intersection of $DF$, $AB$ and $Y$ the intersection of $DE, AC$. Show that $XY \parallel BC$.
2013 National Olympiad First Round, 25
Let $D$ be a point on side $[AB]$ of triangle $ABC$ with $|AB|=|AC|$ such that $[CD]$ is an angle bisector and $m(\widehat{ABC})=40^\circ$. Let $F$ be a point on the extension of $[AB]$ after $B$ such that $|BC|=|AF|$. Let $E$ be the midpoint of $[CF]$. If $G$ is the intersection of lines $ED$ and $AC$, what is $m(\widehat{FBG})$?
$
\textbf{(A)}\ 150^\circ
\qquad\textbf{(B)}\ 135^\circ
\qquad\textbf{(C)}\ 120^\circ
\qquad\textbf{(D)}\ 105^\circ
\qquad\textbf{(E)}\ \text{None of above}
$
2002 Portugal MO, 3
Daniel painted a rectangular painting measuring $2$ meters by $4$ meters with four colors. Knowing that he used more than two colors to paint the four corners of the painting, prove that he painted of the same color two points that are at least $\sqrt5$ meters
2020 ABMC, 2020 Oct
[b]p1.[/b] Catherine's teacher thinks of a number and asks her to subtract $5$ and then multiply the result by $6$. Catherine accidentally switches the numbers by subtracting 6 and multiplying by $5$ to get $30$. If Catherine had not swapped the numbers, what would the correct answer be?
[b]p2.[/b] At Acton Boxborough Regional High School, desks are arranged in a rectangular grid-like configuration. In order to maintain proper social distancing, desks are required to be at least 6 feet away from all other desks. Assuming that the size of the desks is negligible, what is the maximum number of desks that can fit in a $25$ feet by $25$ feet classroom?
[b]p3.[/b] Joshua hates writing essays for homework, but his teacher Mr. Meesh assigns two essays every $3$ weeks. However, Mr. Meesh favors Joshua, so he allows Joshua to skip one essay out of every $4$ that are assigned. How many essays does Joshua have to write in a $24$-week school year?
[b]p4.[/b] Libra likes to read, but she is easily distracted. If a page number is even, she reads the page twice. If a page number is an odd multiple of three, she skips it. Otherwise, she reads the page exactly once. If Libra's book is $405$ pages long, how many pages in total does she read if she starts on page $1$? (Reading the same page twice counts as two pages.)
[b]p5.[/b] Let the GDP of an integer be its Greatest Divisor that is Prime. For example, the GDP of $14$ is $7$. Find the largest integer less than $100$ that has a GDP of $3$.
[b]p6.[/b] As has been proven by countless scientific papers, the Earth is a flat circle. Bob stands at a point on the Earth such that if he walks in a straight line, the maximum possible distance he can travel before he falls off is $7$ miles, and the minimum possible distance he can travel before he falls off is $3$ miles. Then the Earth's area in square miles is $k\pi$ for some integer $k$. Compute $k$.
[b]p7.[/b] Edward has $2$ magical eggs. Every minute, each magical egg that Edward has will double itself. But there's a catch. At the end of every minute, Edward's brother Eliot will come outside and smash one egg on his forehead, causing Edward to lose that egg permanently. For example, starting with $2$ eggs, after one minute there will be $3$ eggs, then $5$, $9$, and so on. After $1$ hour, the number of eggs can be expressed as $a^b + c$ for positive integers $a$, $b$, $c$ where $a > 1$, and $a$ and $c$ are as small as possible. Find $a + b + c$.
[b]p8.[/b] Define a sequence of real numbers $a_1$, $a_2$, $a_3$, $..$, $a_{2019}$, $a_{2020}$ with the property that $a_n =\frac{a_{n-1} + a_n + a_{n+1}}{3}$ for all $n = 2$, $3$, $4$, $5$,$...$, $2018$, $2019$. Given that $a_1 = 1$ and $a_{1000} = 1999$, find $a_{2020}$.
[b]p9.[/b] In $\vartriangle ABC$ with $AB = 10$ and $AC = 12$, points $D$ and $E$ lie on sides $\overline{AB}$ and $\overline{AC}$, respectively, such that $AD = 4$ and $AE = 5$. If the area of quadrilateral $BCED$ is $40$, find the area of $\vartriangle ADE$.
[b]p10.[/b] A positive integer is called powerful if every prime in its prime factorization is raised to a power greater than or equal to $2$. How many positive integers less than 100 are powerful?
[b]p11.[/b] Let integers $A,B < 10, 000$ be the populations of Acton and Boxborough, respectively. When $A$ is divided by $B$, the remainder is $1$. When $B$ is divided by $A$, the remainder is $2020$. If the sum of the digits of $A$ is $17$, find the total combined population of Acton and Boxborough.
[b]p12.[/b] Let $a_1$, $a_2$, $...$, $a_n$ be an increasing arithmetic sequence of positive integers. Given $a_n - a_1 = 20$ and $a^2_n - a^2_{n-1} = 63$, find the sum of the terms in the arithmetic sequence.
[b]p13.[/b] Bob rolls a cubical, an octahedral and a dodecahedral die ($6$, $8$ and $12$ sides respectively) numbered with the integers from $1$ to $6$, $1$ to $8$ and $1$ to $12$ respectively. If the probability that the sum of the numbers on the cubical and octahedral dice equals the number on the dodecahedral die can be written as $\frac{m}{n}$ , where $m, n$ are relatively prime positive integers, compute $n - m$.
[b]p14.[/b] Let $\vartriangle ABC$ be inscribed in a circle with center $O$ with $AB = 13$, $BC = 14$, $AC = 15$. Let the foot of the perpendicular from $A$ to BC be $D$ and let $AO$ intersect $BC$ at $E$. Given the length of $DE$ can be expressed as $\frac{m}{n}$ where $m$, $n$ are relatively prime positive integers, find $m + n$.
[b]p15.[/b] The set $S$ consists of the first $10$ positive integers. A collection of $10$ not necessarily distinct integers is chosen from $S$ at random. If a particular number is chosen more than once, all but one of its occurrences are removed. Call the set of remaining numbers $A$. Let $\frac{a}{b}$ be the expected value of the number of the elements in $A$, where $a, b$ are relatively prime positive integers. Find the reminder when $a + b$ is divided by $1000$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2000 Cono Sur Olympiad, 2
Consider the following transformation of the Cartesian plane: choose a lattice point and rotate the plane $90^\circ$ counterclockwise about that lattice point. Is it possible, through a sequence of such transformations, to take the triangle with vertices $(0,0)$, $(1,0)$ and $(0,1)$ to the triangle with vertices $(0,0)$, $(1,0)$ and $(1,1)$?
2012 Online Math Open Problems, 40
Suppose $x,y,z$, and $w$ are positive reals such that
\[ x^2 + y^2 - \frac{xy}{2} = w^2 + z^2 + \frac{wz}{2} = 36 \] \[ xz + yw = 30. \] Find the largest possible value of $(xy + wz)^2$.
[i]Author: Alex Zhu[/i]
1994 APMO, 4
Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?
1935 Moscow Mathematical Olympiad, 012
The unfolding of the lateral surface of a cone is a sector of angle $120^o$. The angles at the base of a pyramid constitute an arithmetic progression with a difference of $15^o$. The pyramid is inscribed in the cone. Consider a lateral face of the pyramid with the smallest area. Find the angle $\alpha$ between the plane of this face and the base.
BIMO 2020, 3
Let $G$ be the centroid of a triangle $\triangle ABC$ and let $AG, BG, CG$ meet its circumcircle at $P, Q, R$ respectively.
Let $AD, BE, CF$ be the altitudes of the triangle. Prove that the radical center of circles
$(DQR),(EPR),(FPQ)$ lies on Euler Line of $\triangle ABC$.
[i]Proposed by Ivan Chai, Malaysia.[/i]
2008 Paraguay Mathematical Olympiad, 4
Let $\Gamma$ be a circumference and $A$ a point outside it. Let $B$ and $C$ be points in $\Gamma$ such that $AB$ and $AC$ are tangent to $\Gamma$. Let $P$ be a point in $\Gamma$. Let $D$, $E$ and $F$ be points in $BC$, $AC$ and $AB$ respectively, such that $PD \perp BC$, $PE \perp AC$, and $PF \perp AB$.
Show that $PD^2 = PE \cdot PF$
2021 Denmark MO - Mohr Contest, 1
Georg has a set of sticks. From these sticks he must create a closed figure with the property that each stick makes right angles with its neighbouring sticks. All the sticks must be used. If the sticks have the lengths $1, 1, 2, 2, 2, 3, 3$ and $4$, the figure might for example look like this: [img]https://cdn.artofproblemsolving.com/attachments/9/7/c16a3143a52ec6f442208c63b41f2df1ae735c.png[/img]
(a) Prove that he can create such a figure if the sticks have the lengths $1, 1, 1, 2, 2, 3, 4$ and $4$.
(b) Prove that it cannot be done if the sticks have the lengths $1, 2, 2, 3, 3, 3, 4, 4$ and $4$.
(c) Determine whether it is doable if the sticks have the lengths $1, 2, 2, 2, 3, 3, 3, 4, 4$ and $5$.
Gheorghe Țițeica 2025, P3
Consider the plane vectors $\overrightarrow{OA_1},\overrightarrow{OA_2},\dots ,\overrightarrow{OA_n}$ with $n\geq 3$. Suppose that the inequality $$\big|\overrightarrow{OA_1}+\overrightarrow{OA_2}+\dots +\overrightarrow{OA_n}\big|\geq \big|\pm\overrightarrow{OA_1}\pm\overrightarrow{OA_2}\pm\dots \pm\overrightarrow{OA_n}\big|$$ takes place for all choiches of the $\pm$ signs. Show that there exists a line $\ell$ through $O$ such that all points $A_1,A_2,\dots ,A_n$ are all on one side of $\ell$.
[i]Cristi Săvescu[/i]
2011 AMC 10, 9
The area of $\triangle EBD$ is one third of the area of $3-4-5$ $ \triangle ABC$. Segment $DE$ is perpendicular to segment $AB$. What is $BD$?
[asy]
unitsize(10mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair A=(0,0), B=(5,0), C=(1.8,2.4), D=(5-4sqrt(3)/3,0), E=(5-4sqrt(3)/3,sqrt(3));
pair[] ps={A,B,C,D,E};
draw(A--B--C--cycle);
draw(E--D);
draw(rightanglemark(E,D,B));
dot(ps);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,N);
label("$D$",D,S);
label("$E$",E,NE);
label("$3$",midpoint(A--C),NW);
label("$4$",midpoint(C--B),NE);
label("$5$",midpoint(A--B),SW);[/asy]
$ \textbf{(A)}\ \frac{4}{3} \qquad
\textbf{(B)}\ \sqrt{5} \qquad
\textbf{(C)}\ \frac{9}{4} \qquad
\textbf{(D)}\ \frac{4\sqrt{3}}{3} \qquad
\textbf{(E)}\ \frac{5}{2} $
2009 China Team Selection Test, 1
Let $ ABC$ be a triangle. Point $ D$ lies on its sideline $ BC$ such that $ \angle CAD \equal{} \angle CBA.$ Circle $ (O)$ passing through $ B,D$ intersects $ AB,AD$ at $ E,F$, respectively. $ BF$ meets $ DE$ at $ G$.Denote by$ M$ the midpoint of $ AG.$ Show that $ CM\perp AO.$
Kyiv City MO 1984-93 - geometry, 1991.9.5
A parallelogram is constructed on the coordinate plane, the coordinates of which are integers. It is known that inside the parallelogram and on its contour there are other (except vertices) points with integer coordinates. Prove that the area of the parallelogram is not less than $3/2$.
1967 IMO Shortlist, 5
In the plane a point $O$ is and a sequence of points $P_1, P_2, P_3, \ldots$ are given. The distances $OP_1, OP_2, OP_3, \ldots$ are $r_1, r_2, r_3, \ldots$ Let $\alpha$ satisfies $0 < \alpha < 1.$ Suppose that for every $n$ the distance from the point $P_n$ to any other point of the sequence is $\geq r^{\alpha}_n.$ Determine the exponent $\beta$, as large as possible such that for some $C$ independent of $n$
\[r_n \geq Cn^{\beta}, n = 1,2, \ldots\]
2023 China Team Selection Test, P16
Let $\Gamma, \Gamma_1, \Gamma_2$ be mutually tangent circles. The three circles are also tangent to a line $l$. Let $\Gamma, \Gamma_1$ be tangent to each other at $B_1$, $\Gamma, \Gamma_2$ be tangent to each other at $B_2$, $\Gamma_1, \Gamma_2$ be tangent to each other at $C$. $\Gamma, \Gamma_1, \Gamma_2$ are tangent to $l$ at $A, A_1, A_2$ respectively, where $A$ is between $A_1,A_2$. Let $D_1 = A_1C \cap A_2B_2, D_2 = A_2C \cap A_1B_1$. Prove that $D_1D_2$ is parallel to $l$.