Found problems: 25757
2024 Korea National Olympiad, 7
In an acute triangle $ABC$, let a line $\ell$ pass through the orthocenter and not through point $A$. The line $\ell$ intersects line $BC$ at $P(\neq B, C)$. A line passing through $A$ and perpendicular to $\ell$ meets the circumcircle of triangle $ABC$ at $R(\neq A)$. Let the feet of the perpendiculars from $A, B$ to $\ell$ be $A', B'$, respectively. Define line $\ell_1$ as the line passing through $A'$ and perpendicular to $BC$, and line $\ell_2$ as the line passing through $B'$ and perpendicular to $CA$. Prove that if $Q$ is the reflection of the intersection of $\ell_1$ and $\ell_2$ across $\ell$, then $\angle PQR = 90^{\circ}$.
2013 Oral Moscow Geometry Olympiad, 1
Diagonals of a cyclic quadrilateral $ABCD$ intersect at point $O$. The circumscribed circles of triangles $AOB$ and $COD$ intersect at point $M$ on the side $AD$. Prove that the point $O$ is the center of the inscribed circle of the triangle $BMC$.
2016 Oral Moscow Geometry Olympiad, 4
In a convex $n$-gonal prism all sides are equal. For what $n$ is this prism right?
2019 Yasinsky Geometry Olympiad, p1
The sports ground has the shape of a rectangle $ABCD$, with the angle between the diagonals $AC$ and $BD$ is equal to $60^o$ and $AB >BC$. The trainer instructed Andriyka to go first $10$ times on the route $A-C-B-D-A$, and then $15$ more times along the route $A-D-A$. Andriyka performed the task, moving a total of $4.5$ km. What is the distance $AC$?
Ukrainian TYM Qualifying - geometry, III.13
Inside the regular $n$ -gon $M$ with side $a$ there are $n$ equal circles so that each touches two adjacent sides of the polygon $M$ and two other circles. Inside the formed "star", which is bounded by arcs, these $n$ equal circles are reconstructed so that each touches the two adjacent circles built in the previous step, and two more newly built circles. This process will take $k$ steps. Find the area $S_n (k)$ of the "star", which is formed in the center of the polygon $M$. Consider the spatial analogue of this problem.
2009 Tournament Of Towns, 4
Three planes dissect a parallelepiped into eight hexahedrons such that all of their faces are quadrilaterals (each plane intersects two corresponding pairs of opposite faces of the parallelepiped and does not intersect the remaining two faces). One of the hexahedrons has a circumscribed sphere. Prove that each of these hexahedrons has a circumscribed sphere.
2005 Harvard-MIT Mathematics Tournament, 3
Let $ABCD$ be a rectangle with area $1$, and let $E$ lie on side $CD$. What is the area of the triangle formed by the centroids of triangles $ABE$, $BCE$, and $ADE$?
1952 AMC 12/AHSME, 29
In a circle of radius $ 5$ units, $ CD$ and $ AB$ are perpendicular diameters. A chord $ CH$ cutting $ AB$ at $ K$ is $ 8$ units long. The diameter $ AB$ is divided into two segments whose dimensions are:
$ \textbf{(A)}\ 1.25, 8.75 \qquad\textbf{(B)}\ 2.75,7.25 \qquad\textbf{(C)}\ 2,8 \qquad\textbf{(D)}\ 4,6$
$ \textbf{(E)}\ \text{none of these}$
1992 Mexico National Olympiad, 1
The tetrahedron $OPQR$ has the $\angle POQ = \angle POR = \angle QOR = 90^o$. $X, Y, Z$ are the midpoints of $PQ, QR$ and $RP.$ Show that the four faces of the tetrahedron $OXYZ$ have equal area.
EMCC Guts Rounds, 2019
[u]Round 5[/u]
[b]p13.[/b] Given a (not necessarily simplified) fraction $\frac{m}{n}$ , where $m, n > 6$ are positive integers, when $6$ is subtracted from both the numerator and denominator, the resulting fraction is equal to $\frac45$ of the original fraction. How many possible ordered pairs $(m, n)$ are there?
[b]p14.[/b] Jamesu's favorite anime show has $3$ seasons, with $12$ episodes each. For $8$ days, Jamesu does the following: on the $n^{th}$ day, he chooses $n$ consecutive episodes of exactly one season, and watches them in order. How many ways are there for Jamesu to finish all $3$ seasons by the end of these $8$ days? (For example, on the first day, he could watch episode $5$ of the first season; on the second day, he could watch episodes $11$ and $12$ of the third season, etc.)
[b]p15.[/b] Let $O$ be the center of regular octagon $ABCDEFGH$ with side length $6$. Let the altitude from $O$ meet side $AB$ at $M$, and let $BH$ meet $OM$ at $K$. Find the value of $BH \cdot BK$.
[u]Round 6[/u]
[b]p16.[/b] Fhomas writes the ordered pair $(2, 4)$ on a chalkboard. Every minute, he erases the two numbers $(a, b)$, and replaces them with the pair $(a^2 + b^2, 2ab)$. What is the largest number on the board after $10$ minutes have passed?
[b]p17.[/b] Triangle $BAC$ has a right angle at $A$. Point $M$ is the midpoint of $BC$, and $P$ is the midpoint of $BM$. Point $D$ is the point where the angle bisector of $\angle BAC$ meets $BC$. If $\angle BPA = 90^o$, what is $\frac{PD}{DM}$?
[b]p18.[/b] A square is called legendary if there exist two different positive integers $a, b$ such that the square can be tiled by an equal number of non-overlapping $a$ by $a$ squares and $b$ by $b$ squares. What is the smallest positive integer $n$ such that an $n$ by $n$ square is legendary?
[u]Round 7[/u]
[b]p19.[/b] Let $S(n)$ be the sum of the digits of a positive integer $n$. Let $a_1 = 2019!$, and $a_n = S(a_{n-1})$. Given that $a_3$ is even, find the smallest integer $n \ge 2$ such that $a_n = an_1$.
[b]p20.[/b] The local EMCC bakery sells one cookie for $p$ dollars ($p$ is not necessarily an integer), but has a special offer, where any non-zero purchase of cookies will come with one additional free cookie. With $\$27:50$, Max is able to buy a whole number of cookies (including the free cookie) with a single purchase and no change leftover. If the price of each cookie were $3$ dollars lower, however, he would be able to buy double the number of cookies as before in a single purchase (again counting the free cookie) with no change leftover. What is the value of $p$?
[b]p21.[/b] Let circle $\omega$ be inscribed in rhombus $ABCD$, with $\angle ABC < 90^o$. Let the midpoint of side $AB$ be labeled $M$, and let $\omega$ be tangent to side $AB$ at $E$. Let the line tangent to $\omega$ passing through $M$ other than line $AB$ intersect segment $BC$ at $F$. If $AE = 3$ and $BE = 12$, what is the area of $\vartriangle MFB$?
[u]Round 8[/u]
[b]p22.[/b] Find the remainder when $1010 \cdot 1009! + 1011 \cdot 1008! + ... + 2018 \cdot 1!$ is divided by $2019$.
[b]p23.[/b] Two circles $\omega_1$ and $\omega_2$ have radii $1$ and $2$, respectively and are externally tangent to one another. Circle $\omega_3$ is externally tangent to both $\omega_1$ and $\omega_2$. Let $M$ be the common external tangent of $\omega_1$ and $\omega_3$ that doesn't intersect $\omega_2$. Similarly, let $N$ be the common external tangent of $\omega_2$ and $\omega_3$ that doesn't intersect $\omega_1$. Given that $M$ and N are parallel, find the radius of $\omega_3$.
[b]p24.[/b] Mana is standing in the plane at $(0, 0)$, and wants to go to the EMCCiffel Tower at $(6, 6)$. At any point in time, Mana can attempt to move $1$ unit to an adjacent lattice point, or to make a knight's move, moving diagonally to a lattice point $\sqrt5$ units away. However, Mana is deathly afraid of negative numbers, so she will make sure never to decrease her $x$ or $y$ values. How many distinct paths can Mana take to her destination?
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2949411p26408196]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1998 Brazil Team Selection Test, Problem 4
Let $L$ be a circle with center $O$ and tangent to sides $AB$ and $AC$ of a triangle $ABC$ in points $E$ and $F$, respectively. Let the perpendicular from $O$ to $BC$ meet $EF$ at $D$. Prove that $A,D$ and $M$ are collinear, where $M$ is the midpoint of $BC$.
1997 Estonia Team Selection Test, 1
In a triangle $ABC$ points $A_1,B_1,C_1$ are the midpoints of $BC,CA,AB$ respectively,and $A_2,B_2,C_2$ are the midpoints of the altitudes from $A,B,C$ respectively. Show that the lines $A_1A_2,B_1B_2,C_1,C_2$ are concurrent.
2020 ASDAN Math Tournament, 11
$\vartriangle ABC$ is right with $\angle C = 90^o$. The internal angle bisectors of $\angle A$ and $\angle B$ meet at point $D$, while the external angle bisectors of $\angle A$ and $\angle B$ meet at point $E$. Suppose that $AD = 1$ and $BD = 2$. The value of $DE^2$ can be expressed as $x+y \sqrt{z}$ for integers $x$, $y$, and $z$, where $z$ is greater than $1$ and not divisible by the square of any prime. Compute $100x + 10y + z$.
Note: For a generic triangle $\vartriangle PQR$, if we let $Q'$ be the reflection of $Q$ over $P$, then the external angle bisector of $\angle P$ is the line that contains the internal angle bisector of $\angle Q'PR$.
1974 IMO Longlists, 1
We consider the division of a chess board $8 \times 8$ in p disjoint rectangles which satisfy the conditions:
[b]a)[/b] every rectangle is formed from a number of full squares (not partial) from the 64 and the number of white squares is equal to the number of black squares.
[b]b)[/b] the numbers $\ a_{1}, \ldots, a_{p}$ of white squares from $p$ rectangles satisfy $a_1, , \ldots, a_p.$ Find the greatest value of $p$ for which there exists such a division and then for that value of $p,$ all the sequences $a_{1}, \ldots, a_{p}$ for which we can have such a division.
[color=#008000]Moderator says: see [url]https://artofproblemsolving.com/community/c6h58591[/url][/color]
2019 BmMT, Ind. Round
[b]p1.[/b] If Clark wants to divide $100$ pizzas among $25$ people so that each person receives the same number of pizzas, how many pizzas should each person receive?
[b]p2.[/b] In a group of $3$ people, every pair of people shakes hands once. How many handshakes occur?
[b]p3.[/b] Dylan and Joey have $14$ costumes in total. Dylan gives Joey $4$ costumes, and Joey now has the number of costumes that Dylan had before giving Joey any costumes. How many costumes does Dylan have now?
[b]p4.[/b] At Banjo Borger, a burger costs $7$ dollars, a soda costs $2$ dollars, and a cookie costs $3$ dollars. Alex, Connor, and Tony each spent $11$ dollars on their order, but none of them got the same order. If Connor bought the most cookies, how many cookies did Connor buy?
[b]p5.[/b] Joey, James, and Austin stand on a large, flat field. If the distance from Joey to James is $30$ and the distance from Austin to James is $18$, what is the minimal possible distance from Joey to Austin?
[b]p6.[/b] If the first and third terms of a five-term arithmetic sequence are $3$ and $8$, respectively, what is the sum of all $5$ terms in the sequence?
[b]p7.[/b] What is the area of the $S$-shaped figure below, which has constant vertical height $5$ and width $10$?
[img]https://cdn.artofproblemsolving.com/attachments/3/c/5bbe638472c8ea8289b63d128cd6b449440244.png[/img]
[b]p8.[/b] If the side length of square $A$ is $4$, what is the perimeter of square $B$, formed by connecting the midpoints of the sides of $A$?
[b]p9.[/b] The Chan Shun Auditorium at UC Berkeley has room number $2050$. The number of seats in the auditorium is a factor of the room number, and there are between $150$ and $431$ seats, inclusive. What is the sum of all of the possible numbers of seats in Chan Shun Auditorium?
[b]p10.[/b] Krishna has a positive integer $x$. He notices that $x^2$ has the same last digit as $x$. If Krishna knows that $x$ is a prime number less than $50$, how many possible values of $x$ are there?
[b]p11.[/b] Jing Jing the Kangaroo starts on the number $1$. If she is at a positive integer $n$, she can either jump to $2n$ or to the sum of the digits of $n$. What is the smallest positive integer she cannot reach no matter how she jumps?
[b]p12.[/b] Sylvia is $3$ units directly east of Druv and runs twice as fast as Druv. When a whistle blows, Druv runs directly north, and Sylvia runs along a straight line. If they meet at a point a distance $d$ units away from Druv's original location, what is the value of $d$?
[b]p13.[/b] If $x$ is a real number such that $\sqrt{x} + \sqrt{10} = \sqrt{x + 20}$, compute $x$.
[b]p14.[/b] Compute the number of rearrangments of the letters in $LATEX$ such that the letter $T$ comes before the letter $E$ and the letter $E$ comes before the letter $X$. For example, $TLEAX$ is a valid rearrangment, but $LAETX$ is not.
[b]p15.[/b] How many integers $n$ greater than $2$ are there such that the degree measure of each interior angle of a regular $n$-gon is an even integer?
[b]p16.[/b] Students are being assigned to faculty mentors in the Berkeley Math Department. If there are $7$ students and $3$ mentors and each student has exactly one mentor, in how many ways can students be assigned to mentors given that each mentor has at least one student?
[b]p17.[/b] Karthik has a paper square of side length $2$. He folds the square along a crease that connects the midpoints of two opposite sides (as shown in the left diagram, where the dotted line indicates the fold). He takes the resulting rectangle and folds it such that one of its vertices lands on the vertex that is diagonally opposite. Find the area of Karthik's final figure.
[img]https://cdn.artofproblemsolving.com/attachments/1/e/01aa386f6616cafeed5f95ababb27bf24657f6.png[/img]
[b]p18.[/b] Sally is inside a pen consisting of points $(a, b)$ such that $0 \le a, b \le 4$. If she is currently on the point $(x, y)$, she can move to either $(x, y + 1)$, $(x, y - 1)$, or $(x + 1, y)$. Given that she cannot revisit any point she has visited before, find the number of ways she can reach $(4, 4)$ from $(0, 0)$.
[b]p19.[/b] An ant sits on the circumference of the circular base of a party hat (a cone without a circular base for the ant to walk on) of radius $2$ and height $\sqrt{5}$. If the ant wants to reach a point diametrically opposite of its current location on the hat, what is the minimum possible distance the ant needs to travel?
[img]https://cdn.artofproblemsolving.com/attachments/3/4/6a7810b9862fd47106c3c275c96337ef6d23c2.png[/img]
[b]p20.[/b] If $$f(x) = \frac{2^{19}x + 2^{20}}{ x^2 + 2^{20}x + 2^{20}}.$$ find the value of $f(1) + f(2) + f(4) + f(8) + ... + f(220)$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2007 Princeton University Math Competition, 4
A cube is formed from $n^3$ ($n \ge 2$) unit cubes, each painted white on five randomly selected sides. This cube is dipped into paint remover and broken into the original unit cubes. What is the expected number of these unit cubes with exactly four sides painted white?
1991 Arnold's Trivium, 93
Decompose the space of functions defined on the vertices of a cube into invariant subspaces irreducible with respect to the group of a) its symmetries, b) its rotations.
2024 Euler Olympiad, Round 1, 5
Let $ABCDEF$ be a convex hexagon. Segments $AE$ and $BF$ intersect at $X$ and segments $BD$ and $CE$ intersect in $Y.$ It's known that $$ \angle XBC = \angle XDE = \angle YAB = \angle YEF = 80^\circ \text{ and } \angle XCB = \angle XED = \angle YBA = \angle YFE = \angle 70^\circ.$$ Let $P$ and $Q$ be such points on line $XY$ that segments $PX$ and $AF$ intersect, segments $QY$ and $CD$ intersect and $\angle APF = \angle CQD = 30 ^\circ.$ Estimate the sum: \[ \frac{BX}{BF} + \frac{BY}{BD} + \frac{EX}{EA} + \frac{EY}{EC} + \frac{PX}{PY} + \frac{QY}{QX} \]
[i]Proposed by Gogi Khimshiashvili, Georgia [/i]
the 6th XMO, 5
As shown in the figure, $\odot O$ is the circumcircle of $\vartriangle ABC$, $\odot J$ is inscribed in $\odot O$ and is tangent to $AB$, $AC$ at points $D$ and E respectively, line segment $FG$ and $\odot O$ are tangent to point $A$, and $AF =AG=AD$, the circumscribed circle of $\vartriangle AFB$ intersects $\odot J$ at point $S$. Prove that the circumscribed circle of $\vartriangle ASG$ is tangent to $\odot J$.
[img]https://cdn.artofproblemsolving.com/attachments/a/a/62d44e071ea9903ebdd68b43943ba1d93b4138.png[/img]
1996 All-Russian Olympiad, 1
Points $E$ and $F$ are given on side $BC$ of convex quadrilateral $ABCD$ (with $E$ closer than $F$ to $B$). It is known that $\angle BAE = \angle CDF$ and $\angle EAF = \angle FDE$. Prove that $\angle FAC = \angle EDB$.
[i]M. Smurov[/i]
2021 Malaysia IMONST 2, 4
Given an octagon such that all its interior angles are equal, and all its sides have integer lengths.
Prove that any pair of opposite sides have equal lengths.
2007 Sharygin Geometry Olympiad, 18
Determine the locus of vertices of triangles which have prescribed orthocenter and center of circumcircle.
1995 IMO Shortlist, 6
Let $ A_1A_2A_3A_4$ be a tetrahedron, $ G$ its centroid, and $ A'_1, A'_2, A'_3,$ and $ A'_4$ the points where the circumsphere of $ A_1A_2A_3A_4$ intersects $ GA_1,GA_2,GA_3,$ and $ GA_4,$ respectively. Prove that
\[ GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_ \cdot4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4\]
and
\[ \frac{1}{GA'_1} \plus{} \frac{1}{GA'_2} \plus{} \frac{1}{GA'_3} \plus{} \frac{1}{GA'_4} \leq \frac{1}{GA_1} \plus{} \frac{1}{GA_2} \plus{} \frac{1}{GA_3} \plus{} \frac{1}{GA_4}.\]
2006 China Second Round Olympiad, 1
An ellipse with foci $B_0,B_1$ intersects $AB_i$ at $C_i$ $(i=0,1)$. Let $P_0$ be a point on ray $AB_0$. $Q_0$ is a point on ray $C_1B_0$ such that $B_0P_0=B_0Q_0$; $P_1$ is on ray $B_1A$ such that $C_1Q_0=C_1P_1$; $Q_1$ is on ray $B_1C_0$ such that $B_1P_1=B_1Q_1$; $P_2$ is on ray $AB_0$ such that $C_0Q_1=C_0Q_2$. Prove that $P_0=P_2$ and that the four points $P_0,Q_0,Q_1,P_1$ are concyclic.
2024 Dutch IMO TST, 4
Let $ABC$ be an acute triangle with circumcenter $O$, and let $D$, $E$, and $F$ be the feet of altitudes from $A$, $B$, and $C$ to sides $BC$, $CA$, and $AB$, respectively. Denote by $P$ the intersection of the tangents to the circumcircle of $ABC$ at $B$ and $C$. The line through $P$ perpendicular to $EF$ meets $AD$ at $Q$, and let $R$ be the foot of the perpendicular from $A$ to $EF$. Prove that $DR$ and $OQ$ are parallel.