This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Kyiv City MO Juniors 2003+ geometry, 2006.9.4

On the sides $AB$ and $CD$ of the parallelogram $ABCD$ mark points $E$ and $F$, respectively. On the diagonals $AC$ and $BD$ chose the points $M$ and $N$ so that $EM\parallel BD$ and $FN\parallel AC$. Prove that the lines $AF, DE$ and $MN$ intersect at one point. (B. Rublev)

1981 All Soviet Union Mathematical Olympiad, 320

A pupil has tried to make a copy of a convex polygon, drawn inside the unit circle. He draw one side, from its end -- another, and so on. Having finished, he has noticed that the first and the last vertices do not coincide, but are situated $d$ units of length far from each other. The pupil draw angles precisely, but made relative error less than $p$ in the lengths of sides. Prove that $d < 4p$.

2022 Estonia Team Selection Test, 4

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral whose center of the circumscribed circle is inside this quadrilateral, and its diagonals intersect in point $S{}$. Let $P{}$ and $Q{}$ be the centers of the curcimuscribed circles of triangles $ABS$ and $BCS$. The lines through the points $P{}$ and $Q{}$, which are parallel to the sides $AD$ and $CD$, respectively, intersect at the point $R$. Prove that the point $R$ lies on the line $BD$.

2009 Stanford Mathematics Tournament, 7

An isosceles trapezoid has legs and shorter base of length $1$. Find the maximum possible value of its area

2005 National Olympiad First Round, 25

Let $E$, $F$, $G$ be points on sides $[AB]$, $[BC]$, $[CD]$ of the rectangle $ABCD$, respectively, such that $|BF|=|FQ|$, $m(\widehat{FGE})=90^\circ$, $|BC|=4\sqrt 3 / 5$, and $|EF|=\sqrt 5$. What is $|BF|$? $ \textbf{(A)}\ \dfrac{\sqrt{10} - \sqrt{2}}{2} \qquad\textbf{(B)}\ \sqrt 3 -1 \qquad\textbf{(C)}\ \sqrt 3 \qquad\textbf{(D)}\ \dfrac{\sqrt{11} - \sqrt{3}}{2} \qquad\textbf{(E)}\ 1 $

Kvant 2019, M2545

Tags: incenter , geometry
Let $N,K,L$ be points on the sides $\overline{AB}, \overline{BC}, \overline{CA}$ respectively. Suppose $AL=BK$ and $\overline{CN}$ is the internal bisector of angle $ACB$. Let $P$ be the intersection of lines $\overline{AK}$ and $\overline{BL}$ and let $I,J$ be the incenters of triangles $APL$ and $BPK$ respectively. Let $Q$ be the intersection of lines $\overline{IJ}$ and $\overline{CN}$. Prove that $IP=JQ$.

2014 AIME Problems, 11

In $\triangle RED, RD =1, \angle DRE = 75^\circ$ and $\angle RED = 45^\circ$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC} \perp \overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA = AR$. Then $AE = \tfrac{a-\sqrt{b}}{c},$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.

2001 Korea - Final Round, 3

For a positive integer $n \ge 5$, let $a_i,b_i (i = 1,2, \cdots ,n)$ be integers satisfying the following two conditions: [list] (a) The pairs $(a_i,b_i)$ are distinct for $i = 1,2,\cdots,n$; (b) $|a_1b_2-a_2b_1| = |a_2b_3-a_3b_2| = \cdots = |a_nb_1-a_1b_n| = 1$. [/list] Prove that there exist indices $i,j$ such that $1<|i-j|<n-1$ and $|a_ib_j-a_jb_i|=1$.

2005 China Team Selection Test, 1

Point $P$ lies inside triangle $ABC$. Let the projections of $P$ onto sides $BC$,$CA$,$AB$ be $D$, $E$, $F$ respectively. Let the projections from $A$ to the lines $BP$ and $CP$ be $M$ and $N$ respectively. Prove that $ME$, $NF$ and $BC$ are concurrent.

2014 Purple Comet Problems, 29

Consider the sequences of six positive integers $a_1,a_2,a_3,a_4,a_5,a_6$ with the properties that $a_1=1$, and if for some $j > 1$, $a_j = m > 1$, then $m-1$ appears in the sequence $a_1,a_2,\dots,a_{j-1}$. Such sequences include $1,1,2,1,3,2$ and $1,2,3,1,4,1$ but not $1,2,2,4,3,2$. How many such sequences of six positive integers are there?

2018 Israel Olympic Revenge, 3

Let $ABC$ be a triangle with circumcircle $\omega$ and circumcenter $O$. The tangent line to from $A$ to $\omega$ intersects $BC$ at $K$. The tangent line to from $B$ to $\omega$ intersects $AC$ at $L$. Let $M,N$ be the midpoints of $AK,BL$ respectively. The line $MN$ is named by $\alpha$. The feet of perpendicular from $A,B,C$ to the edges of $\triangle ABC$ are named by $D,E,F$ respectively. The perpendicular bisectors of $EF,DF,DE$ intersect $\alpha$ at $X,Y,Z$ respectively. Let $AD,BE,CF$ intersect $\omega$ again at $D',E',F'$ respectively. If $H$ is the orthocenter of $ABC$, prove that the lines $XD',YE',ZF',OH$ are concurrent.

1954 Czech and Slovak Olympiad III A, 2

Let $a,b$ complex numbers. Show that if the roots of the equation $z^2+az+b=0$ and 0 form a triangle with the right angle at the origin, then $a^2=2b\neq0.$ Also determine whether the opposite implication holds.

2016 India IMO Training Camp, 1

An acute-angled $ABC \ (AB<AC)$ is inscribed into a circle $\omega$. Let $M$ be the centroid of $ABC$, and let $AH$ be an altitude of this triangle. A ray $MH$ meets $\omega$ at $A'$. Prove that the circumcircle of the triangle $A'HB$ is tangent to $AB$. [i](A.I. Golovanov , A.Yakubov)[/i]

2024 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
The triangle $ABC$ is inscribed in a circle. Two ants crawl out of points $B$ and $C$ at the same time. They crawl along the arc $BC$ towards each other so that the product of the distances from them to point $A$ remains unchanged. Prove that during their movement (until the moment of meeting), the straight line passing through the ants touches some fixed circle.

2004 IMO Shortlist, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

1980 IMO, 15

Tags: ratio , function , geometry
Three points $A,B,C$ are such that $B\in AC$. On one side of $AC$, draw the three semicircles with diameters $AB,BC,CA$. The common interior tangent at $B$ to the first two semicircles meets the third circle $E$. Let $U,V$ be the points of contact of the common exterior tangent to the first two semicircles. Evaluate the ratio $R=\frac{[EUV]}{[EAC]}$ as a function of $r_{1} = \frac{AB}{2}$ and $r_2 = \frac{BC}{2}$, where $[X]$ denotes the area of polygon $X$.

1999 National High School Mathematics League, 6

Points $A(1,2)$, a line that passes $(5,-2)$ intersects the parabola $y^2=4x$ at two points $B,C$. Then, $\triangle ABC$ is $\text{(A)}$ an acute triangle $\text{(B)}$ an obtuse triangle $\text{(C)}$ a right triangle $\text{(D)}$ not sure

2008 AMC 10, 19

A cylindrical tank with radius $ 4$ feet and height $ 9$ feet is lying on its side. The tank is filled with water to a depth of $ 2$ feet. What is the volume of the water, in cubic feet? $ \textbf{(A)}\ 24\pi \minus{} 36 \sqrt {2} \qquad \textbf{(B)}\ 24\pi \minus{} 24 \sqrt {3} \qquad \textbf{(C)}\ 36\pi \minus{} 36 \sqrt {3} \qquad \textbf{(D)}\ 36\pi \minus{} 24 \sqrt {2} \\ \textbf{(E)}\ 48\pi \minus{} 36 \sqrt {3}$

2020 MBMT, 5

Tags: geometry
Fuzzy draws a segment of positive length in a plane. How many locations can Fuzzy place another point in the same plane to form a non-degenerate isosceles right triangle with vertices consisting of his new point and the endpoints of the segment? [i]Proposed by Timothy Qian[/i]

2007 Singapore Senior Math Olympiad, 3

In the equilateral triangle $ABC, M, N$ are the midpoints of the sides $AB, AC$, respectively. The line $MN$ intersects the circumcircle of $\vartriangle ABC$ at $K$ and $L$ and the lines $CK$ and $CL$ meet the line $AB$ at $P$ and $Q$, respectively. Prove that $PA^2 \cdot QB = QA^2 \cdot PB$.

2016 Indonesia TST, 6

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

2010 Abels Math Contest (Norwegian MO) Final, 1a

The point $P$ lies on the edge $AB$ of a quadrilateral $ABCD$. The angles $BAD, ABC$ and $CPD$ are right, and $AB = BC + AD$. Show that $BC = BP$ or $AD = BP$.

1995 AMC 12/AHSME, 23

The sides of a triangle have lengths $11$,$15$, and $k$, where $k$ is an integer. For how many values of $k$ is the triangle obtuse? $\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 13 \qquad \textbf{(E)}\ 14$

2002 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an isosceles triangle such that $AB = AC$ and $\angle A = 20^o$. Let $M$ be the foot of the altitude from $C$ and let $N$ be a point on the side $AC$ such that $CN =\frac12 BC$. Determine the measure of the angle $AMN$.

2009 Germany Team Selection Test, 1

Tags: geometry
Let $ ABCD$ be a chordal/cyclic quadrilateral. Consider points $ P,Q$ on $ AB$ and $ R,S$ on $ CD$ with \[ \overline{AP}: \overline{PB} \equal{} \overline{CS}: \overline{SD}, \quad \overline{AQ}: \overline{QB} \equal{} \overline{CR}: \overline{RD}.\] How to choose $ P,Q,R,S$ such that $ \overline{PR} \cdot \overline{AB} \plus{} \overline{QS} \cdot \overline{CD}$ is minimal?