This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1999 AIME Problems, 2

Consider the parallelogram with vertices $(10,45),$ $(10,114),$ $(28,153),$ and $(28,84).$ A line through the origin cuts this figure into two congruent polygons. The slope of the line is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2018 CMIMC Geometry, 4

Suppose $\overline{AB}$ is a segment of unit length in the plane. Let $f(X)$ and $g(X)$ be functions of the plane such that $f$ corresponds to rotation about $A$ $60^\circ$ counterclockwise and $g$ corresponds to rotation about $B$ $90^\circ$ clockwise. Let $P$ be a point with $g(f(P))=P$; what is the sum of all possible distances from $P$ to line $AB$?

2022 Germany Team Selection Test, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

Indonesia MO Shortlist - geometry, g7

A semicircle $(O)$ is drawn with the center $O$, where $O$ lies on a line $\ell$. $C$ and $D$ lie on the circle $(O)$, and the tangent lines of $(O)$ at points $C$ and $D$ intersects the line $\ell$ at points $B$ and $A$, respectively, such that $O$ lies between points $B$ and $A$. Let $E$ be the intersection point between $AC$ and $BD$, and $F$ the point on $\ell$ so that $EF $ is perpendicular to line $\ell$. Prove that $EF$ bisects the angle $\angle CFD$.

2019 PUMaC Geometry B, 7

Let two ants stand on the perimeter of a regular $2019$-gon of unit side length. One of them stands on a vertex and the other one is on the midpoint of the opposite side. They start walking along the perimeter at the same speed counterclockwise. The locus of their midpoints traces out a figure $P$ in the plane with $N$ corners. Let the area enclosed by the convex hull of $P$ be $\tfrac{A}{B}\tfrac{\sin^m\left(\tfrac{\pi}{4038}\right)}{\tan\left(\tfrac{\pi}{2019}\right)}$, where $A$ and $B$ are coprime positive integers, and $m$ is the smallest possible positive integer such that this formula holds. Find $A+B+m+N$. [i]Note:[/i] The [i]convex hull[/i] of a figure $P$ is the convex polygon of smallest area which contains $P$.

2005 MOP Homework, 4

Tags: geometry , incenter
The incenter $O$ of an isosceles triangle $ABC$ with $AB=AC$ meets $BC$, $CA$, $AB$ at $K$, $L$, $M$ respectively. Let $N$ be the intersection of lines $OL$ and $KM$ and let $Q$ be the intersection of lines $BN$ and $CA$. Let $P$ be the foot of the perpendicular from $A$ to $BQ$. If we assume that $BP=AP+2PQ$, what are the possible values of $\frac{AB}{BC}$?

2014 Sharygin Geometry Olympiad, 2

A circle, its chord $AB$ and the midpoint $W$ of the minor arc $AB$ are given. Take an arbitrary point $C$ on the major arc $AB$. The tangent to the circle at $C$ meets the tangents at $A$ and $B$ at points $X$ and $Y$ respectively. Lines $WX$ and WY meet AB at points $N$ and $M$ respectively. Prove that the length of segment $NM$ does not depend on point $C$. (A. Zertsalov, D. Skrobot)

2014 Contests, 1

As shown in the figure, given $\vartriangle ABC$ with $\angle B$, $\angle C$ acute angles, $AD \perp BC$, $DE \perp AC$, $M$ midpoint of $DE$, $AM \perp BE$. Prove that $\vartriangle ABC$ is isosceles. [img]https://cdn.artofproblemsolving.com/attachments/a/8/f553c33557979f6f7b799935c3bde743edcc3c.png[/img]

2002 Moldova National Olympiad, 12.6

Let A,B,C be three collinear points and a circle T(A,r). If M and N are two diametrical opposite variable points on T, Find locus geometrical of the intersection BM and CN.

2000 Estonia National Olympiad, 4

Let $E$ be the midpoint of the side $AB$ of the parallelogram $ABCD$. Let $F$ be the projection of $B$ on $AC$. Prove that the triangle $ABF$ is isosceles

2002 CentroAmerican, 4

Let $ ABC$ be a triangle, $ D$ be the midpoint of $ BC$, $ E$ be a point on segment $ AC$ such that $ BE\equal{}2AD$ and $ F$ is the intersection point of $ AD$ with $ BE$. If $ \angle DAC\equal{}60^{\circ}$, find the measure of the angle $ FEA$.

LMT Team Rounds 2010-20, 2017 MaxArea

The goal of this problem is to show that the maximum area of a polygon with a fixed number of sides and a fixed perimeter is achieved by a regular polygon. (a) Prove that the polygon with maximum area must be convex. (Hint: If any angle is concave, show that the polygon’s area can be increased.) (b) Prove that if two adjacent sides have different lengths, the area of the polygon can be increased without changing the perimeter. (c) Prove that the polygon with maximum area is equilateral, that is, has all the same side lengths. It is true that when given all four side lengths in order of a quadrilateral, the maximum area is achieved in the unique configuration in which the quadrilateral is cyclic, that is, it can be inscribed in a circle. (d) Prove that in an equilateral polygon, if any two adjacent angles are different then the area of the polygon can be increased without changing the perimeter. (e) Prove that the polygon of maximum area must be equiangular, or have all angles equal. (f ) Prove that the polygon of maximum area is a regular polygon. PS. You had better use hide for answers.

2023 Malaysian IMO Training Camp, 3

Tags: geometry
Given an acute triangle $ABC$ with $AB<AC$, let $D$ be the foot of altitude from $A$ to $BC$ and let $M\neq D$ be a point on segment $BC$.$\,J$ and $K$ lie on $AC$ and $AB$ respectively such that $K,J,M$ lies on a common line perpendicular to $BC$. Let the circumcircles of $\triangle ABJ$ and $\triangle ACK$ intersect at $O$. Prove that $J,O,M$ are collinear if and only if $M$ is the midpoint of $BC$. [i]Proposed by Wong Jer Ren[/i]

1967 Swedish Mathematical Competition, 6

The vertices of a triangle are lattice points. There are no lattice points on the sides (apart from the vertices) and $n$ lattice points inside the triangle. Show that its area is $n + \frac12$. Find the formula for the general case where there are also $m$ lattice points on the sides (apart from the vertices).

2008 China Team Selection Test, 3

Determine the greatest positive integer $ n$ such that in three-dimensional space, there exist n points $ P_{1},P_{2},\cdots,P_{n},$ among $ n$ points no three points are collinear, and for arbitary $ 1\leq i < j < k\leq n$, $ P_{i}P_{j}P_{k}$ isn't obtuse triangle.

2021 New Zealand MO, 5

Let $ABC$ be an isosceles triangle with $AB = AC$. Point $D$ lies on side $AC$ such that $BD$ is the angle bisector of $\angle ABC$. Point $E$ lies on side $BC$ between $B$ and $C$ such that $BE = CD$. Prove that $DE$ is parallel to $AB$.

2021 Dutch Mathematical Olympiad, 4

In triangle $ABC$ we have $\angle ACB = 90^o$. The point $M$ is the midpoint of $AB$. The line through $M$ parallel to $BC$ intersects $AC$ in $D$. The midpoint of line segment $CD$ is $E$. The lines $BD$ and $CM$ are perpendicular. (a) Prove that triangles $CME$ and $ABD$ are similar. (b) Prove that $EM$ and $AB$ are perpendicular. [asy] unitsize(1 cm); pair A, B, C, D, E, M; A = (0,0); B = (4,0); C = (2.6,2); M = (A + B)/2; D = (A + C)/2; E = (C + D)/2; draw(A--B--C--cycle); draw(C--M--D--B); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, N); dot("$D$", D, NW); dot("$E$", E, NW); dot("$M$", M, S); [/asy] [i]Be aware: the figure is not drawn to scale.[/i]

1999 Romania National Olympiad, 3

Let $ABCDA'B'C'D'$ be a right parallelepiped, $E$ and $F$ the projections of $A$ on the lines $A'D$, $A'C$, respectively, and $P, Q$ the projections of $B'$ on the lines $A'C'$ and $A'C$ Prove that a) the planes $(AEF)$ and $(B'PQ)$ are parallel b) the triangles $AEF$ and $B'PQ$ are similar.

2001 Cuba MO, 9

Tags: area , geometry
In triangle $ABC$, right at $C$, let $F$ be the intersection point of the altitude $CD$ with the angle bisector $AE$ and $G$ be the intersection point of $ED$ with $BF$. Prove that the area of the quadrilateral $CEGF$ is equal to the area of the triangle $BDG$ .

2014 Contests, 2 seniors

On the sides of triangle $ABC$, isosceles right-angled triangles $AUB, CVB$, and $AWC$ are placed. These three triangles have their right angles at vertices $U, V$ , and $W$, respectively. Triangle $AUB$ lies completely inside triangle $ABC$ and triangles $CVB$ and $AWC$ lie completely outside $ABC$. See the figure. Prove that quadrilateral $UVCW$ is a parallelogram. [asy] import markers; unitsize(1.5 cm); pair A, B, C, U, V, W; A = (0,0); B = (2,0); C = (1.7,2.5); U = (B + rotate(90,A)*(B))/2; V = (B + rotate(90,C)*(B))/2; W = (C + rotate(90,A)*(C))/2; draw(A--B--C--cycle); draw(A--W, StickIntervalMarker(1,1,size=2mm)); draw(C--W, StickIntervalMarker(1,1,size=2mm)); draw(B--V, StickIntervalMarker(1,2,size=2mm)); draw(C--V, StickIntervalMarker(1,2,size=2mm)); draw(A--U, StickIntervalMarker(1,3,size=2mm)); draw(B--U, StickIntervalMarker(1,3,size=2mm)); draw(rightanglemark(A,U,B,5)); draw(rightanglemark(B,V,C,5)); draw(rightanglemark(A,W,C,5)); dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, N); dot("$U$", U, NE); dot("$V$", V, NE); dot("$W$", W, NW); [/asy]

2016 Junior Regional Olympiad - FBH, 4

Tags: geometry
In right angled triangle $ABC$ point $D$ is midpoint of hypotenuse, and $E$ and $F$ are points on shorter sides $AC$ and $BC$, respectively, such that $DE \perp DF$. Prove that $EF^2=AE^2+BF^2$

1991 Cono Sur Olympiad, 1

Let $A, B$ and $C$ be three non-collinear points and $E$ ($\ne B$) an arbitrary point not in the straight line $AC$. Construct the parallelograms $ABCD$ and $AECF$. Prove that $BE \parallel DF$.

2003 Hungary-Israel Binational, 2

Tags: geometry
Let $M$ be a point inside a triangle $ABC$ . The lines $AM , BM , CM$ intersect $BC, CA, AB$ at $A_{1}, B_{1}, C_{1}$, respectively. Assume that $S_{MAC_{1}}+S_{MBA_{1}}+S_{MCB_{1}}= S_{MA_{1}C}+S_{MB_{1}A}+S_{MC_{1}B}$ . Prove that one of the lines $AA_{1}, BB_{1}, CC_{1}$ is a median of the triangle $ABC.$

1984 IMO Longlists, 4

Given a triangle $ABC$, three equilateral triangles $AEB, BFC$, and $CGA$ are constructed in the exterior of $ABC$. Prove that: $(a) CE = AF = BG$; $(b) CE, AF$, and $BG$ have a common point. I could not find a separate topic for this question and I need one. http://en.wikipedia.org/wiki/Fermat_point of course.

2002 USA Team Selection Test, 5

Consider the family of nonisosceles triangles $ABC$ satisfying the property $AC^2 + BC^2 = 2 AB^2$. Points $M$ and $D$ lie on side $AB$ such that $AM = BM$ and $\angle ACD = \angle BCD$. Point $E$ is in the plane such that $D$ is the incenter of triangle $CEM$. Prove that exactly one of the ratios \[ \frac{CE}{EM}, \quad \frac{EM}{MC}, \quad \frac{MC}{CE} \] is constant.