This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 Sharygin Geometry Olympiad, 9.3

Points $A_1$, $A_2$, $B_1$, $B_2$ lie on the circumcircle of a triangle $ABC$ in such a way that $A_1B_1 \parallel AB$, $A_1A_2 \parallel BC$, $B_1B_2 \parallel AC$. The line $AA_2$ and $CA_1$ meet at point $A'$, and the lines $BB_2$ and $CB_1$ meet at point $B'$. Prove that all lines $A'B'$ concur.

V Soros Olympiad 1998 - 99 (Russia), 11.8

Tags: geometry
Side $BC$ of triangle $ABC$ is equal to $a$ and the opposite angle is equal to $\theta$. A straight line passing through the midpoint of $BC$ and the center of the inscribed circle intersects lines $AB$ and $AC$ at points $M$ and $P$, respectively. Find the area of the quadrilateral (non-convex) $BMPC$.

2001 Singapore Team Selection Test, 1

In the acute triangle $ABC$, let $D$ be the foot of the perpendicular from $A$ to $BC$, let $E$ be the foot of the perpendicular from $D$ to $AC$, and let $F$ be a point on the line segment $DE$. Prove that $AF$ is perpendicular to $BE$ if and only if $FE/FD = BD/DC$

2012 Today's Calculation Of Integral, 796

Answer the following questions: (1) Let $a$ be non-zero constant. Find $\int x^2 \cos (a\ln x)dx.$ (2) Find the volume of the solid generated by a rotation of the figures enclosed by the curve $y=x\cos (\ln x)$, the $x$-axis and the lines $x=1,\ x=e^{\frac{\pi}{4}}$ about the $x$-axis.

2010 Oral Moscow Geometry Olympiad, 4

From the vertex $A$ of the parallelogram $ABCD$, the perpendiculars $AM,AN$ on sides $BC,CD$ respectively. $P$ is the intersection point of $BN$ and $DM$. Prove that the lines $AP$ and $MN$ are perpendicular.

Novosibirsk Oral Geo Oly VIII, 2017.2

Tags: angle , geometry
You are given a convex quadrilateral $ABCD$. It is known that $\angle CAD = \angle DBA = 40^o$, $\angle CAB = 60^o$, $\angle CBD = 20^o$. Find the angle $\angle CDB $.

1990 China Team Selection Test, 2

Tags: geometry
Finitely many polygons are placed in the plane. If for any two polygons of them, there exists a line through origin $O$ that cuts them both, then these polygons are called "properly placed". Find the least $m \in \mathbb{N}$, such that for any group of properly placed polygons, $m$ lines can drawn through $O$ and every polygon is cut by at least one of these $m$ lines.

1988 Tournament Of Towns, (176) 2

Two isosceles trapezoids are inscribed in a circle in such a way that each side of each trapezoid is parallel to a certain side of the other trapezoid . Prove that the diagonals of one trapezoid are equal to the diagonals of the other.

2007 AIME Problems, 11

Two long cylindrical tubes of the same length but different diameters lie parallel to each other on a flat surface. The larger tube has radius $72$ and rolls along the surface toward the smaller tube, which has radius $24$. It rolls over the smaller tube and continues rolling along the flat surface until it comes to rest on the same point of its circumference as it started, having made one complete revolution. If the smaller tube never moves, and the rolling occurs with no slipping, the larger tube ends up a distance $x$ from where it starts. The distance $x$ can be expressed in the form $a\pi+b\sqrt{c},$ where $a,$ $b,$ and $c$ are integers and $c$ is not divisible by the square of any prime. Find $a+b+c.$

1999 China Team Selection Test, 1

A circle is tangential to sides $AB$ and $AD$ of convex quadrilateral $ABCD$ at $G$ and $H$ respectively, and cuts diagonal $AC$ at $E$ and $F$. What are the necessary and sufficient conditions such that there exists another circle which passes through $E$ and $F$, and is tangential to $DA$ and $DC$ extended?

2021 Yasinsky Geometry Olympiad, 1

The quadrilateral $ABCD$ is known to have $BC = CD = AC$, and the angle $\angle ABC= 70^o$. Calculate the degree measure of the angle $\angle ADB$. (Alexey Panasenko)

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

1989 National High School Mathematics League, 4

Three points of a triangle are among 8 vertex of a cube. So the number of such acute triangles is $\text{(A)}0\qquad\text{(B)}6\qquad\text{(C)}8\qquad\text{(D)}24$

2018 Sharygin Geometry Olympiad, 23

The plane is divided into convex heptagons with diameters less than 1. Prove that an arbitrary disc with radius 200 intersects most than a billion of them.

2013 Turkey Team Selection Test, 2

We put pebbles on some unit squares of a $2013 \times 2013$ chessboard such that every unit square contains at most one pebble. Determine the minimum number of pebbles on the chessboard, if each $19\times 19$ square formed by unit squares contains at least $21$ pebbles.

2022 JHMT HS, 5

Tags: geometry
Suppose $\triangle JHU$ satisfies $JH = JU = 44$ and $HU = 32$. There is a unique circle passing through $U$ that is tangent to $\overline{JH}$ at its midpoint; let this circle intersect $\overline{JU}$ and $\overline{HU}$ again at points $X \neq U$ and $Y \neq U$, respectively. Let $Z$ be the unique point on $\overline{JH}$ such that $JZ = XU$. Compute the perimeter of quadrilateral $UXZY$.

2007 Pre-Preparation Course Examination, 2

Let $C_{1}$, $C_{2}$ and $C_{3}$ be three circles that does not intersect and non of them is inside another. Suppose $(L_{1},L_{2})$, $(L_{3},L_{4})$ and $(L_{5},L_{6})$ be internal common tangents of $(C_{1}, C_{2})$, $(C_{1}, C_{3})$, $(C_{2}, C_{3})$. Let $L_{1},L_{2},L_{3},L_{4},L_{5},L_{6}$ be sides of polygon $AC'BA'CB'$. Prove that $AA',BB',CC'$ are concurrent.

1990 Tournament Of Towns, (278) 3

A finite set $M$ of unit squares on the plane is considered. The sides of the squares are parallel to the coordinate axes and the squares are allowed to intersect. It is known that the distance between the centres of any pair of squares is no greater than $2$. Prove that there exists a unit square (not necessarily belonging to $M$) with sides parallel to the coordinate axes and which has at least one common point with each of the squares in $M$. (A Andjans, Riga)

ABMC Online Contests, 2019 Nov

[b]p1.[/b] The remainder of a number when divided by $7$ is $5$. If I multiply the number by $32$ and add $18$ to the product, what is the new remainder when divided by $7$? [b]p2.[/b] If a fair coin is flipped $15$ times, what is the probability that there are more heads than tails? [b]p3.[/b] Let $-\frac{\sqrt{p}}{q}$ be the smallest nonzero real number such that the reciprocal of the number is equal to the number minus the square root of the square of the number, where $p$ and $q$ are positive integers and $p$ is not divisible the square of any prime. Find $p + q$. [b]p4.[/b] Rachel likes to put fertilizers on her grass to help her grass grow. However, she has cows there as well, and they eat $3$ little fertilizer balls on average. If each ball is spherical with a radius of $4$, then the total volume that each cow consumes can be expressed in the form $a\pi$ where $a$ is an integer. What is $a$? [b]p5.[/b] One day, all $30$ students in Precalc class are bored, so they decide to play a game. Everyone enters into their calculators the expression $9 \diamondsuit 9 \diamondsuit 9 ... \diamondsuit 9$, where $9$ appears $2020$ times, and each $\diamondsuit$ is either a multiplication or division sign. Each student chooses the signs randomly, but they each choose one more multiplication sign than division sign. Then all $30$ students calculate their expression and take the class average. Find the expected value of the class average. [b]p6.[/b] NaNoWriMo, or National Novel Writing Month, is an event in November during which aspiring writers attempt to produce novel-length work - formally defined as $50,000$ words or more - within the span of $30$ days. Justin wants to participate in NaNoWriMo, but he's a busy high school student: after accounting for school, meals, showering, and other necessities, Justin only has six hours to do his homework and perhaps participate in NaNoWriMo on weekdays. On weekends, he has twelve hours on Saturday and only nine hours on Sunday, because he goes to church. Suppose Justin spends two hours on homework every single day, including the weekends. On Wednesdays, he has science team, which takes up another hour and a half of his time. On Fridays, he spends three hours in orchestra rehearsal. Assume that he spends all other time on writing. Then, if November $1$st is a Friday, let $w$ be the minimum number of words per minute that Justin must type to finish the novel. Round $w$ to the nearest whole number. [b]p7.[/b] Let positive reals $a$, $b$, $c$ be the side lengths of a triangle with area $2030$. Given $ab + bc + ca = 15000$ and $abc = 350000$, find the sum of the lengths of the altitudes of the triangle. [b]p8.[/b] Find the minimum possible area of a rectangle with integer sides such that a triangle with side lengths $3$, $4$, $5$, a triangle with side lengths $4$, $5$, $6$, and a triangle with side lengths $\frac94$, $4$, $4$ all fit inside the rectangle without overlapping. [b]p9.[/b] The base $16$ number $10111213...99_{16}$, which is a concatenation of all of the (base $10$) $2$-digit numbers, is written on the board. Then, the last $2n$ digits are erased such that the base $10$ value of remaining number is divisible by $51$. Find the smallest possible integer value of $n$. [b]p10.[/b] Consider sequences that consist entirely of $X$'s, $Y$ 's and $Z$'s where runs of consecutive $X$'s, $Y$ 's, and $Z$'s are at most length $3$. How many sequences with these properties of length $8$ are there? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2001 IMO, 5

Let $ABC$ be a triangle with $\angle BAC = 60^{\circ}$. Let $AP$ bisect $\angle BAC$ and let $BQ$ bisect $\angle ABC$, with $P$ on $BC$ and $Q$ on $AC$. If $AB + BP = AQ + QB$, what are the angles of the triangle?

2002 Romania Team Selection Test, 1

Let $ABCD$ be a unit square. For any interior points $M,N$ such that the line $MN$ does not contain a vertex of the square, we denote by $s(M,N)$ the least area of the triangles having their vertices in the set of points $\{ A,B,C,D,M,N\}$. Find the least number $k$ such that $s(M,N)\le k$, for all points $M,N$. [i]Dinu Șerbănescu[/i]

2014 Czech-Polish-Slovak Match, 3

Given is a convex $ABCD$, which is $ |\angle ABC| = |\angle ADC|= 135^\circ $. On the $AB, AD$ are also selected points $M, N$ such that $ |\angle MCD| = |\angle NCB| = 90^ \circ $. The circumcircles of the triangles $AMN$ and $ABD$ intersect for the second time at point $K \ne A$. Prove that lines $AK $ and $KC$ are perpendicular. (Irán)

2001 Tournament Of Towns, 6

Tags: geometry
Let $AH_A$, $BH_B$ and $CH_C$ be the altitudes of triangle $\triangle ABC$. Prove that the triangle whose vertices are the intersection points of the altitudes of triangles $\triangle AH_BH_C$, $\triangle BH_AH_C$ and $\triangle CH_AH_B$ is equal to triangle $\triangle H_AH_BH_C$.

2012 NIMO Problems, 10

In cyclic quadrilateral $ABXC$, $\measuredangle XAB = \measuredangle XAC$. Denote by $I$ the incenter of $\triangle ABC$ and by $D$ the projection of $I$ on $\overline{BC}$. If $AI = 25$, $ID = 7$, and $BC = 14$, then $XI$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$. [i]Proposed by Aaron Lin[/i]

1971 All Soviet Union Mathematical Olympiad, 145

a) Given a triangle $A_1A_2A_3$ and the points $B_1$ and $D_2$ on the side $[A_1A_2]$, $B_2$ and $D_3$ on the side $[A_2A3]$, $B_3$ and $D_1$ on the side $[A_3A_1]$. If you construct parallelograms $A_1B_1C_1D_1$, $A_2B_2C_2D_2$ and $A_3B_3C_3D_3$, the lines $(A_1C_1)$, $(A_2C_2)$ and $(A_3C_3)$, will cross in one point $O$. Prove that if $$|A_1B_1| = |A_2D_2| \,\,\, and \,\,\, |A_2B_2| = |A_3D_3|$$ then $$|A_3B_3| = |A_1D_1|$$ b) Given a convex polygon $A_1A_2 ... A_n$ and the points $B_1$ and $D_2$ on the side $[A_1A_2]$, $B_2$ and $D_3$ on the side $[A_2A_3]$, ... $B_n$ and $D_1$ on the side $[A_nA_1]$. If you construct parallelograms $A_1B_1C_1D_1$, $A_2B_2C_2D_2$, $... $, $A_nB_nC_nD_n$, the lines $(A_1C_1)$, $(A_2C_2)$, $...$, $(A_nC_n)$, will cross in one point $O$. Prove that $$|A_1B_1| \cdot |A_2B_2|\cdot ... \cdot |A_nB_n| = |A_1D_1|\cdot |A_2D_2|\cdot ...\cdot |A_nD_n|$$