This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2016 Novosibirsk Oral Olympiad in Geometry, 1

In the quadrilateral $ABCD$, angles $B$ and $C$ are equal to $120^o$, $AB = CD = 1$, $CB = 4$. Find the length $AD$.

DMM Individual Rounds, 2013(-14)Tie

[b]p1.[/b] A light beam shines from the origin into the unit square at an angle of $\theta$ to one of the sides such that $\tan \theta = \frac{13}{17}$ . The light beam is reflected by the sides of the square. How many times does the light beam hit a side of the square before hitting a vertex of the square? [img]https://cdn.artofproblemsolving.com/attachments/5/7/1db0aad33ed9bf82bee3303c7fbbe0b7c2574f.png[/img] [b]p2.[/b] Alex is given points $A_1,A_2,...,A_{150}$ in the plane such that no three are collinear and $A_1$, $A_2$, $...$, $A_{100}$ are the vertices of a convex polygon $P$ containing $A_{101}$, $A_{102}$, $ ...$, $A_{150}$ in its interior. He proceeds to draw edges $A_iA_j$ such that no two edges intersect (except possibly at their endpoints), eventually dividing $P$ up into triangles. How many triangles are there? [img]https://cdn.artofproblemsolving.com/attachments/d/5/12c757077e87809837d16128b018895a8bcc94.png[/img] [b]p3. [/b]The polynomial P(x) has the property that $P(1)$, $P(2)$, $P(3)$, $P(4)$, and $P(5)$ are equal to $1$, $2$, $3$, $4$,$5$ in some order. How many possibilities are there for the polynomial $P$, given that the degree of $P$ is strictly less than $4$? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Kazakhstan National Olympiad, 1

Let $k_{1},k_{2}, k_{3}$ -Excircles triangle $A_{1}A_{2}A_{3}$ with area $S$. $ k_{1}$ touch side $A_{2}A_{3} $ at the point $B_{1}$ Direct $A_{1}B_{1}$ intersect $k_{1}$ at the points $B_{1}$ and $C_{1}$.Let $S_{1}$ - area of ​​the quadrilateral $A_{1}A_{2}C_{1}A_{3}$ Similarly, we define $S_{2}, S_{3}$. Prove that $\frac{1}{S}\le \frac{1}{S_{1}}+\frac{1}{S_{2}}+\frac{1}{S_{2}}$

EMCC Accuracy Rounds, 2016

[b]p1.[/b] A right triangle has a hypotenuse of length $25$ and a leg of length $16$. Compute the length of the other leg of this triangle. [b]p2.[/b] Tanya has a circular necklace with $5$ evenly-spaced beads, each colored red or blue. Find the number of distinct necklaces in which no two red beads are adjacent. If a necklace can be transformed into another necklace through a series of rotations and reflections, then the two necklaces are considered to be the same. [b]p3.[/b] Find the sum of the digits in the decimal representation of $10^{2016} - 2016$. [b]p4.[/b] Let $x$ be a real number satisfying $$x^1 \cdot x^2 \cdot x^3 \cdot x^4 \cdot x^5 \cdot x^6 = 8^7.$$ Compute the value of $x^7$. [b]p5.[/b] What is the smallest possible perimeter of an acute, scalene triangle with integer side lengths? [b]p6.[/b] Call a sequence $a_1, a_2, a_3,..., a_n$ mountainous if there exists an index $t$ between $1$ and $n$ inclusive such that $$a_1 \le a_2\le ... \le a_t \,\,\,\, and \,\,\,\, a_t \ge a_{t+1} \ge ... \ge a_n$$ In how many ways can Bishal arrange the ten numbers $1$, $1$, $2$, $2$, $3$, $3$, $4$, $4$, $5$, and $5$ into a mountainous sequence? (Two possible mountainous sequences are $1$, $1$, $2$, $3$, $4$, $4$, $5$, $5$, $3$, $2$ and $5$, $5$, $4$, $4$, $3$, $3$, $2$, $2$, $1$, $1$.) [b]p7.[/b] Find the sum of the areas of all (non self-intersecting) quadrilaterals whose vertices are the four points $(-3,-6)$, $(7,-1)$, $(-2, 9)$, and $(0, 0)$. [b]p8.[/b] Mohammed Zhang's favorite function is $f(x) =\sqrt{x^2 - 4x + 5} +\sqrt{x^2 + 4x + 8}$. Find the minumum possible value of $f(x)$ over all real numbers $x$. [b]p9.[/b] A segment $AB$ with length $1$ lies on a plane. Find the area of the set of points $P$ in the plane for which $\angle APB$ is the second smallest angle in triangle $ABP$. [b]p10.[/b] A binary string is a dipalindrome if it can be produced by writing two non-empty palindromic strings one after the other. For example, $10100100$ is a dipalindrome because both $101$ and $00100$ are palindromes. How many binary strings of length $18$ are both palindromes and dipalindromes? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 National Olympiad First Round, 5

If a triangle has side lengths $a,b,c$ where $a\leq 2 \leq b \leq 3$, what is the largest possible value of its area? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ \text{None of above} $

2014 Baltic Way, 13

Let $ABCD$ be a square inscribed in a circle $\omega$ and let $P$ be a point on the shorter arc $AB$ of $\omega$. Let $CP\cap BD = R$ and $DP \cap AC = S.$ Show that triangles $ARB$ and $DSR$ have equal areas.

2023 Sharygin Geometry Olympiad, 1

Let $L$ be the midpoint of the minor arc $AC$ of the circumcircle of an acute-angled triangle $ABC$. A point $P$ is the projection of $B$ to the tangent at $L$ to the circumcircle. Prove that $P$, $L$, and the midpoints of sides $AB$, $BC$ are concyclic.

2000 JBMO ShortLists, 23

Tags: geometry
The point $P$ is inside of an equilateral triangle with side length $10$ so that the distance from $P$ to two of the sides are $1$ and $3$. Find the distance from $P$ to the third side.

2021 Sharygin Geometry Olympiad, 8.2

Three parallel lines $\ell_a, \ell_b, \ell_c$ pass through the vertices of triangle $ABC$. A line $a$ is the reflection of altitude $AH_a$ about $\ell_a$. Lines $b, c$ are defined similarly. Prove that $a, b, c$ are concurrent.

2024 Mathematical Talent Reward Programme, 4

MTRPia in $2044$ is highly advanced and a lot of the work is done by disc-shaped robots, each of radius $1$ unit. In order to not collide with each other, there robots have a smaller $360$-degree camera mounted on top, as shown in the figure (robot $r_1$ 'sees' robot $r_2$). Each of there cameras themselves are smaller discs of radius $c$. Suppose there are three robots $r_1, r_2, r_3$ placed 'consecutively' such that $r_2$ is roughly in the middle. The angle between the lines joining the centres of $r_1, r_2$ and $r_2, r_3$ is given to be $\theta$. The distance between the centres of $r_1,r_2 = $ distance between centres of $r_2,r_3 = d$. Show (with the aid of clear diagrams) that $r_1$ and $r_3$ can see each other iff $\sin{\theta} > \frac{1-c}{d}$. As a bonus, try to show that in a longer 'chain' of such robots (same $d$, $\theta$), if $\sin{\theta} > \frac{1-c}{d}$ then all robots can see each other.

1988 Flanders Math Olympiad, 2

A 3-dimensional cross is made up of 7 cubes, one central cube and 6 cubes that share a face with it. The cross is inscribed in a circle with radius 1. What's its volume?

2007 Argentina National Olympiad, 6

Julián chooses $2007$ points of the plane between which there are no $3$ aligned, and draw with red all the segments that join two of those points. Next, Roberto draws several lines. Its objective is for each red segment to be cut inside by (at least) one of the lines. Determine the minor $\ell$ lines such that, no matter how Julián chooses the $2007$ points, with the properly chosen $\ell$ lines, Roberto will achieve his objective with certainty.

2024 All-Russian Olympiad Regional Round, 9.8

Tags: geometry
Let $ABC$ be an acute triangle and let $P, Q$ lie on the segment $BC$ such that $BP=PQ=CQ$. The feet of the perpendiculars from $P, Q$ to $AC, AB$ are $X, Y$. Show that the centroid of $ABC$ is equidistant from the lines $QX$ and $PY$.

2014 Oral Moscow Geometry Olympiad, 4

In triangle $ABC$, the perpendicular bisectors of sides $AB$ and $BC$ intersect side $AC$ at points $P$ and $Q$, respectively, with point $P$ lying on the segment $AQ$. Prove that the circumscribed circles of the triangles $PBC$ and $QBA$ intersect on the bisector of the angle $PBQ$.

2006 AMC 10, 5

A 2 x 3 rectangle and a 3 x 4 rectangle are contained within a square without overlapping at any interior point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square? $ \textbf{(A) } 16 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 49 \qquad \textbf{(E) } 64$

2014 BMT Spring, 7

Let $VWXYZ$ be a square pyramid with vertex $V$ with height $1$, and with the unit square as its base. Let $STANFURD$ be a cube, such that face $FURD$ lies in the same plane as and shares the same center as square face $WXYZ$. Furthermore, all sides of $FURD$ are parallel to the sides of $WXY Z$. Cube $STANFURD$ has side length $s$ such that the volume that lies inside the cube but outside the square pyramid is equal to the volume that lies inside the square pyramid but outside the cube. What is the value of $s$?

2006 Pre-Preparation Course Examination, 5

Tags: geometry
Suppose $\Delta$ is a fixed line and $F$ and $F'$ are two points with equal distance from $\Delta$ that are on two sides of $\Delta$. The circle $C$ is with center $P$ and radius $mPF$ where $m$ is a positive number not equal to $1$. The circle $C'$ is the circle that $PFF'$ is inscribed in it. a) What is the condition on $P$ such that $C$ and $C'$ intersect? b) If we denote the intersections of $C$ and $C'$ to be $M$ and $M'$ then what is the locus of $M$ and $M'$; c) Show that $C$ is always tangent to this locus.

2007 Bulgaria National Olympiad, 1

The quadrilateral $ABCD$, where $\angle BAD+\angle ADC>\pi$, is inscribed a circle with centre $I$. A line through $I$ intersects $AB$ and $CD$ in points $X$ and $Y$ respectively such that $IX=IY$. Prove that $AX\cdot DY=BX\cdot CY$.

Kyiv City MO Seniors Round2 2010+ geometry, 2020.10.2

Let $M$ be the midpoint of the side $AC$ of triangle $ABC$. Inside $\vartriangle BMC$ was found a point $P$ such that $\angle BMP = 90^o$, $\angle ABC+ \angle APC =180^o$. Prove that $\angle PBM + \angle CBM = \angle PCA$. (Anton Trygub)

2016 Balkan MO, 2

Let $ABCD$ be a cyclic quadrilateral with $AB<CD$. The diagonals intersect at the point $F$ and lines $AD$ and $BC$ intersect at the point $E$. Let $K$ and $L$ be the orthogonal projections of $F$ onto lines $AD$ and $BC$ respectively, and let $M$, $S$ and $T$ be the midpoints of $EF$, $CF$ and $DF$ respectively. Prove that the second intersection point of the circumcircles of triangles $MKT$ and $MLS$ lies on the segment $CD$. [i](Greece - Silouanos Brazitikos)[/i]

1999 Harvard-MIT Mathematics Tournament, 10

Let $A_n$ be the area outside a regular $n$-gon of side length $1$ but inside its circumscribed circle, let $B_n$ be the area inside the $n$-gon but outside its inscribed circle. Find the limit as $n$ tends to infinity of $\dfrac{A_n}{B_n}$.

2004 Postal Coaching, 17

In a system of numeration with base $B$ , there are $n$ one-digit numbers less than $B$ whose cubes have $B-1$ in the units-digits place. Determine the relation between $n$ and $B$

2008 Oral Moscow Geometry Olympiad, 3

Tags: angle , hexagon , geometry
In the regular hexagon $ABCDEF$ on the line $AF$, the point $X$ is taken so that the angle $XCD$ is $45^o$. Find the angle $\angle FXE$. (Kiev Olympiad)

2013 ITAMO, 5

$ABC$ is an isosceles triangle with $AB=AC$ and the angle in $A$ is less than $60^{\circ}$. Let $D$ be a point on $AC$ such that $\angle{DBC}=\angle{BAC}$. $E$ is the intersection between the perpendicular bisector of $BD$ and the line parallel to $BC$ passing through $A$. $F$ is a point on the line $AC$ such that $FA=2AC$ ($A$ is between $F$ and $C$). Show that $EB$ and $AC$ are parallel and that the perpendicular from $F$ to $AB$, the perpendicular from $E$ to $AC$ and $BD$ are concurrent.

2012 Romanian Master of Mathematics, 5

Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours. [i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]