Found problems: 25757
2009 Indonesia TST, 3
Let $ C_1$ be a circle and $ P$ be a fixed point outside the circle $ C_1$. Quadrilateral $ ABCD$ lies on the circle $ C_1$ such that rays $ AB$ and $ CD$ intersect at $ P$. Let $ E$ be the intersection of $ AC$ and $ BD$.
(a) Prove that the circumcircle of triangle $ ADE$ and the circumcircle of triangle $ BEC$ pass through a fixed point.
(b) Find the the locus of point $ E$.
2014 AMC 12/AHSME, 14
A rectangular box has a total surface area of $94$ square inches. The sum of the lengths of all its edges is $48$ inches. What is the sum of the lengths in inches of all of its interior diagonals?
${ \textbf{(A)}\ 8\sqrt{3}\qquad\textbf{(B)}\ 10\sqrt{2}\qquad\textbf{(C)}\ 16\sqrt{3}\qquad\textbf{(D)}}\ 20\sqrt{2}\qquad\textbf{(E)}\ 40\sqrt{2} $
2004 All-Russian Olympiad, 1
Are there such pairwise distinct natural numbers $ m, n, p, q$ satisfying $ m \plus{} n \equal{} p \plus{} q$ and $ \sqrt{m} \plus{} \sqrt[3]{n} \equal{} \sqrt{p} \plus{} \sqrt[3]{q} > 2004$ ?
2018 Mid-Michigan MO, 5-6
[b]p1.[/b] A Slavic dragon has three heads. A knight fights the dragon. If the knight cuts off one dragon’s head three new heads immediately grow. Is it possible that the dragon has $2018$ heads at some moment of the fight?
[b]p2.[/b] Peter has two squares $3\times 3$ and $4\times 4$. He must cut one of them or both of them in no more than four parts in total. Is Peter able to assemble a square using all these parts?
[b]p3.[/b] Usually, dad picks up Constantine after his music lessons and they drive home. However, today the lessons have ended earlier and Constantine started walking home. He met his dad $14$ minutes later and they drove home together. They arrived home $6$ minutes earlier than usually. Home many minutes earlier than usual have the lessons ended? Please, explain your answer.
[b]p4.[/b] All positive integers from $1$ to $2018$ are written on a blackboard. First, Peter erased all numbers divisible by $7$. Then, Natalie erased all remaining numbers divisible by $11$. How many numbers did Natalie remove? Please, explain your answer.
[b]p5.[/b] $30$ students took part in a mathematical competition consisting of four problems. $25$ students solved the first problem, $24$ students solved the second problem, $22$ students solved the third, and, finally, $21$ students solved the fourth. Show that there are at least two students who solved all four problems.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2007 Tournament Of Towns, 7
$T$ is a point on the plane of triangle $ABC$ such that $\angle ATB = \angle BTC = \angle CTA = 120^\circ$. Prove that the lines symmetric to $AT, BT$ and $CT$ with respect to $BC, CA$ and $AB$, respectively, are concurrent.
1935 Moscow Mathematical Olympiad, 006
The base of a right pyramid is a quadrilateral whose sides are each of length $a$. The planar angles at the vertex of the pyramid are equal to the angles between the lateral edges and the base. Find the volume of the pyramid.
Brazil L2 Finals (OBM) - geometry, 2021.5
Let $ABC$ be an acute-angled triangle. Let $A_1$ be the midpoint of the arc $BC$ which contain the point $A$. Let $A_2$ and $A_3$ be the foot(s) of the perpendicular(s) of the point $A_1$ to the lines $AB$ and $AC$, respectively. Define $B_2,B_3,C_2,C_3$ analogously.
a) Prove that the line $A_2A_3$ cuts $BC$ in the midpoint.
b) Prove that the lines $A_2A_3,B_2B_3$ and $C_2C_3$ are concurrents.
1999 National Olympiad First Round, 13
Square $ BDEC$ with center $ F$ is constructed to the out of triangle $ ABC$ such that $ \angle A \equal{} 90{}^\circ$, $ \left|AB\right| \equal{} \sqrt {12}$, $ \left|AC\right| \equal{} 2$. If $ \left[AF\right]\bigcap \left[BC\right] \equal{} \left\{G\right\}$ , then $ \left|BG\right|$ will be
$\textbf{(A)}\ 6 \minus{} 2\sqrt {3} \qquad\textbf{(B)}\ 2\sqrt {3} \minus{} 1 \qquad\textbf{(C)}\ 2 \plus{} \sqrt {3} \\ \qquad\textbf{(D)}\ 4 \minus{} \sqrt {3} \qquad\textbf{(E)}\ 5 \minus{} 2\sqrt {2}$
2018 Sharygin Geometry Olympiad, 17
Let each of circles $\alpha, \beta, \gamma$ touches two remaining circles externally, and all of them touche a circle $\Omega$ internally at points $A_1, B_1, C_1$ respectively. The common internal tangent to $\alpha$ and $\beta$ meets the arc $A_1B_1$ not containing $C_1$ at point $C_2$. Points $A_2$, $B_2$ are defined similarly. Prove that the lines $A_1A_2, B_1B_2, C_1C_2$ concur.
DMM Individual Rounds, 2015
[b]p1.[/b] Find the minimum value of $x^4 +2x^3 +3x^2 +2x+2$, where x can be any real number.
[b]p2.[/b] A type of digit-lock has $5$ digits, each digit chosen from $\{1,2, 3, 4, 5\}$. How many different passwords are there that have an odd number of $1$'s?
[b]p3.[/b] Tony is a really good Ping Pong player, or at least that is what he claims. For him, ping pong balls are very important and he can feel very easily when a ping pong ball is good and when it is not. The Ping Pong club just ordered new balls. They usually order form either PPB company or MIO company. Tony knows that PPB balls have $80\%$ chance to be good balls and MIO balls have $50\%$ chance to be good balls. I know you are thinking why would anyone order MIO balls, but they are way cheaper than PPB balls. When the box full with balls arrives (huge number of balls), Tony tries the first ball in the box and realizes it is a good ball. Given that the Ping Pong club usually orders half of the time from PPB and half of the time from MIO, what is the probability that the second ball is a good ball?
[b]p4.[/b] What is the smallest positive integer that is one-ninth of its reverse?
[b]p5.[/b] When Michael wakes up in the morning he is usually late for class so he has to get dressed very quickly. He has to put on a short sleeved shirt, a sweater, pants, two socks and two shoes. People usually put the sweater on after they put the short sleeved shirt on, but Michael has a different style, so he can do it both ways. Given that he puts on a shoe on a foot after he put on a sock on that foot, in how many dierent orders can Michael get dressed?
[b]p6.[/b] The numbers $1, 2,..., 2015$ are written on a blackboard. At each step we choose two numbers and replace them with their nonnegative difference. We stop when we have only one number. How many possibilities are there for this last number?
[b]p7.[/b] Let $A = (a_1b_1a_2b_2... a_nb_n)_{34}$ and $B = (b_1b_2... b_n)_{34}$ be two numbers written in base $34$. If the sum of the base-$34$ digits of $A$ is congruent to $15$ (mod $77$) and the sum of the base $34$ digits of $B$ is congruent to $23$ (mod $77$). Then if $(a_1b_1a_2b_2... a_nb_n)_{34} \equiv x$ (mod $77$) and $0 \le x \le 76$, what is $x$? (you can write $x$ in base $10$)
[b]p8.[/b] What is the sum of the medians of all nonempty subsets of $\{1, 2,..., 9\}$?
[b]p9.[/b] Tony is moving on a straight line for $6$ minutes{classic Tony. Several finitely many observers are watching him because, let's face it, you can't really trust Tony. In fact, they must watch him very closely{ so closely that he must never remain unattended for any second. But since the observers are lazy, they only watch Tony uninterruptedly for exactly one minute, and during this minute, Tony covers exactly one meter. What is the sum of the minimal and maximal possible distance Tony can walk during the six minutes?
[b]p10.[/b] Find the number of nonnegative integer triplets $a, b, c$ that satisfy $$2^a3^b + 9 = c^2.$$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 IFYM, Sozopol, 3
In an acute $\Delta ABC$, $AH_a$ and $BH_b$ are altitudes and $M$ is the middle point of $AB$. The circumscribed circles of $\Delta AMH_a$ and $\Delta BMH_b$ intersect for a second time in $P$. Prove that point $P$ lies on the circumscribed circle of $\Delta ABC$.
2022 HMNT, 7
In circle $\omega$, two perpendicular chords intersect at a point $P$. The two chords have midpoints $M_1$ and $M_2$ respectively, such that $PM_1=15$ and $PM_2=20$. Line $M_1M_2$ intersects $\omega$ at points $A$ and $B$, with $M_1$ between $A$ and $M_2$. Compute the largest possible value of $BM_2-AM_1$.
2011 NIMO Problems, 12
In triangle $ABC$, $AB = 100$, $BC = 120$, and $CA = 140$. Points $D$ and $F$ lie on $\overline{BC}$ and $\overline{AB}$, respectively, such that $BD = 90$ and $AF = 60$. Point $E$ is an arbitrary point on $\overline{AC}$. Denote the intersection of $\overline{BE}$ and $\overline{CF}$ as $K$, the intersection of $\overline{AD}$ and $\overline{CF}$ as $L$, and the intersection of $\overline{AD}$ and $\overline{BE}$ as $M$. If $[KLM] = [AME] + [BKF] + [CLD]$, where $[X]$ denotes the area of region $X$, compute $CE$.
[i]Proposed by Lewis Chen
[/i]
1985 Spain Mathematical Olympiad, 3
Solve the equation $tan^2 2x+2 tan2x tan3x = 1$
1928 Eotvos Mathematical Competition, 3
Let $\ell$ be a given line, $A$ and $B$ given points of the plane. Choose a point $P$ on $\ell $ so that the longer of the segments $AP$, $BP$ is as short as possible. (If $AP = BP,$ either segment may be taken as the longer one.)
2000 Baltic Way, 4
Given a triangle $ ABC$ with $ \angle A \equal{} 120^{\circ}$. The points $ K$ and $ L$ lie on the sides $ AB$ and $ AC$, respectively. Let $ BKP$ and $ CLQ$ be equilateral triangles constructed outside the triangle $ ABC$. Prove that $ PQ \ge\frac{\sqrt 3}{2}\left(AB \plus{} AC\right)$.
Estonia Open Senior - geometry, 2014.2.3
The angles of a triangle are $22.5^o, 45^o$ and $112.5^o$. Prove that inside this triangle there exists a point that is located on the median through one vertex, the angle bisector through another vertex and the altitude through the third vertex.
2018 Taiwan TST Round 2, 1
Let $A,B,C$ be the midpoints of the three sides $B'C', C'A', A'B'$ of the triangle $A'B'C'$ respectively. Let $P$ be a point inside $\Delta ABC$, and $AP,BP,CP$ intersect with $BC, CA, AB$ at $P_a,P_b,P_c$, respectively. Lines $P_aP_b, P_aP_c$ intersect with $B'C'$ at $R_b, R_c$ respectively, lines $P_bP_c, P_bP_a$ intersect with $C'A'$ at $S_c, S_a$ respectively. and lines $P_cP_a, P_cP_b$ intersect with $A'B'$ at $T_a, T_b$, respectively. Given that $S_c,S_a, T_a, T_b$ are all on a circle centered at $O$.
Show that $OR_b=OR_c$.
1987 IMO Shortlist, 13
Is it possible to put $1987$ points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a non-degenerate triangle with rational area? [i](IMO Problem 5)[/i]
[i]Proposed by Germany, DR[/i]
2009 Today's Calculation Of Integral, 419
In the $ xy$ plane, the line $ l$ touches to 2 parabolas $ y\equal{}x^2\plus{}ax,\ y\equal{}x^2\minus{}2ax$, where $ a$ is positive constant.
(1) Find the equation of $ l$.
(2) Find the area $ S$ bounded by the parabolas and the tangent line $ l$.
2002 Croatia National Olympiad, Problem 3
If two triangles with side lengths $a,b,c$ and $a',b',c'$ and the corresponding angle $\alpha,\beta,\gamma$ and $\alpha',\beta',\gamma'$ satisfy $\alpha+\alpha'=\pi$ and $\beta=\beta'$, prove that $aa'=bb'+cc'$.
2000 Tuymaada Olympiad, 2
A tangent $l$ to the circle inscribed in a rhombus meets its sides $AB$ and $BC$ at points $E$ and $F$ respectively.
Prove that the product $AE\cdot CF$ is independent of the choice of $l$.
1999 Tournament Of Towns, 2
On a rectangular piece of paper there are
(a) several marked points all on one straight line,
(b) three marked points (not necessarily on a straight line).
We are allowed to fold the paper several times along a straight line not containing marked points and then puncture the folded paper with a needle. Show that this can be done so that after the paper has been unfolded all the marked points are punctured and there are no extra holes.
(A Shapovalov)
2011 National Olympiad First Round, 21
Let $E$ be a point inside the rhombus $ABCD$ such that $|AE|=|EB|, m(\widehat{EAB}) = 11^{\circ}$, and $m(\widehat{EBC}) = 71^{\circ}$. Find $m(\widehat{DCE})$.
$\textbf{(A)}\ 72^{\circ} \qquad\textbf{(B)}\ 71^{\circ} \qquad\textbf{(C)}\ 70^{\circ} \qquad\textbf{(D)}\ 69^{\circ} \qquad\textbf{(E)}\ 68^{\circ}$
2005 Singapore Senior Math Olympiad, 2
Consider the nonconvex quadrilateral $ABCD$ with $\angle C>180$ degrees. Let the side $DC$ extended to meet $AB$ at $F$ and the side $BC$ extended to meet $AD$ at $E$. A line intersects the interiors of the sides $AB,AD,BC,CD$ at points $K,L,J,I$ respectively. Prove that if $DI=CF$ and $BJ=CE$, then $KJ=IL$