Found problems: 25757
2017 Oral Moscow Geometry Olympiad, 5
The inscribed circle of the non-isosceles triangle $ABC$ touches sides $AB, BC$ and $AC$ at points $C_1, A_1$ and $B_1$, respectively. The circumscribed circle of the triangle $A_1BC_1$ intersects the lines $B_1A_1$ and $B_1C_1$ at the points $A_0$ and $C_0$, respectively. Prove that the orthocenter of triangle $A_0BC_0$, the center of the inscribed circle of triangle $ABC$ and the midpoint of the $AC$ lie on one straight line.
1990 Tournament Of Towns, (255) 3
(a) Some vertices of a dodecahedron are to be marked so that each face contains a marked vertex. What is the smallest number of marked vertices for which this is possible?
(b) Answer the same question, but for an icosahedron.
(G. Galperin, Moscow)
(Recall that a dodecahedron has $12$ pentagonal faces which meet in threes at each vertex, while an icosahedron has $20$ triangular faces which meet in fives at each vertex.)
2012 Bosnia Herzegovina Team Selection Test, 6
A unit square is divided into polygons, so that all sides of a polygon are parallel to sides of the given square. If the total length of the segments inside the square (without the square) is $2n$ (where $n$ is a positive real number), prove that there exists a polygon whose area is greater than $\frac{1}{(n+1)^2}$.
2008 AMC 12/AHSME, 25
A sequence $ (a_1,b_1)$, $ (a_2,b_2)$, $ (a_3,b_3)$, $ \ldots$ of points in the coordinate plane satisfies \[ (a_{n \plus{} 1}, b_{n \plus{} 1}) \equal{} (\sqrt {3}a_n \minus{} b_n, \sqrt {3}b_n \plus{} a_n)\hspace{3ex}\text{for}\hspace{3ex} n \equal{} 1,2,3,\ldots.\] Suppose that $ (a_{100},b_{100}) \equal{} (2,4)$. What is $ a_1 \plus{} b_1$?
$ \textbf{(A)}\\minus{} \frac {1}{2^{97}} \qquad
\textbf{(B)}\\minus{} \frac {1}{2^{99}} \qquad
\textbf{(C)}\ 0 \qquad
\textbf{(D)}\ \frac {1}{2^{98}} \qquad
\textbf{(E)}\ \frac {1}{2^{96}}$
2005 Denmark MO - Mohr Contest, 3
The point $P$ lies inside $\vartriangle ABC$ so that $\vartriangle BPC$ is isosceles, and angle $P$ is a right angle. Furthermore both $\vartriangle BAN$ and $\vartriangle CAM$ are isosceles with a right angle at $A$, and both are outside $\vartriangle ABC$. Show that $\vartriangle MNP$ is isosceles and right-angled.
[img]https://1.bp.blogspot.com/-i9twOChu774/XzcBLP-RIXI/AAAAAAAAMXA/n5TJCOJypeMVW28-9GDG4st5C47yhvTCgCLcBGAsYHQ/s0/2005%2BMohr%2Bp3.png[/img]
2022 Serbia JBMO TST, 2
Let $I$ be the incenter, $A_1$ and $B_1$ midpoints of sides $BC$ and $AC$ of a triangle $\Delta ABC$. Denote by $M$ and $N$ the midpoints of the arcs $AC$ and $BC$ of circumcircle of $\Delta ABC$ which do contain the other vertex of the triangle. If points $M$, $I$ and $N$ are collinear prove that:
\begin{align*}
\angle AIB_1=\angle BIA_1=90^{\circ}
\end{align*}
2008 Korea - Final Round, 1
Hexagon $ABCDEF$ is inscribed in a circle $O$.
Let $BD \cap CF = G, AC \cap BE = H, AD \cap CE = I$
Following conditions are satisfied.
$BD \perp CF , CI=AI$
Prove that $CH=AH+DE$ is equivalent to $GH \times BD = BC \times DE$
1987 AIME Problems, 3
By a proper divisor of a natural number we mean a positive integral divisor other than 1 and the number itself. A natural number greater than 1 will be called "nice" if it is equal to the product of its distinct proper divisors. What is the sum of the first ten nice numbers?
ABMC Online Contests, 2020 Dec
[b]p1.[/b] If $a \diamond b = ab - a + b$, find $(3 \diamond 4) \diamond 5$
[b]p2.[/b] If $5$ chickens lay $5$ eggs in $5$ days, how many chickens are needed to lay $10$ eggs in $10$ days?
[b]p3.[/b] As Alissa left her house to go to work one hour away, she noticed that her odometer read $16261$ miles. This number is a "special" number for Alissa because it is a palindrome and it contains exactly $1$ prime digit. When she got home that evening, it had changed to the next greatest "special" number. What was Alissa's average speed, in miles per hour, during her two hour trip?
[b]p4.[/b] How many $1$ in by $3$ in by $8$ in blocks can be placed in a $4$ in by $4$ in by $9$ in box?
[b]p5.[/b] Apple loves eating bananas, but she prefers unripe ones. There are $12$ bananas in each bunch sold. Given any bunch, if there is a $\frac13$ probability that there are $4$ ripe bananas, a $\frac16$ probability that there are $6$ ripe bananas, and a $\frac12$ probability that there are $10$ ripe bananas, what is the expected number of unripe bananas in $12$ bunches of bananas?
[b]p6.[/b] The sum of the digits of a $3$-digit number $n$ is equal to the same number without the hundreds digit. What is the tens digit of $n$?
[b]p7.[/b] How many ordered pairs of positive integers $(a, b)$ satisfy $a \le 20$, $b \le 20$, $ab > 15$?
[b]p8.[/b] Let $z(n)$ represent the number of trailing zeroes of $n!$. What is $z(z(6!))?$
(Note: $n! = n\cdot (n-1) \cdot\cdot\cdot 2 \cdot 1$)
[b]p9.[/b] On the Cartesian plane, points $A = (-1, 3)$, $B = (1, 8)$, and $C = (0, 10)$ are marked. $\vartriangle ABC$ is reflected over the line $y = 2x + 3$ to obtain $\vartriangle A'B'C'$. The sum of the $x$-coordinates of the vertices of $\vartriangle A'B'C'$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$. Compute $a + b$.
[b]p10.[/b] How many ways can Bill pick three distinct points from the figure so that the points form a non-degenerate triangle?
[img]https://cdn.artofproblemsolving.com/attachments/6/a/8b06f70d474a071b75556823f70a2535317944.png[/img]
[b]p11.[/b] Say piece $A$ is attacking piece $B$ if the piece $B$ is on a square that piece $A$ can move to. How many ways are there to place a king and a rook on an $8\times 8$ chessboard such that the rook isn't attacking the king, and the king isn't attacking the rook? Consider rotations of the board to be indistinguishable. (Note: rooks move horizontally or vertically by any number of squares, while kings move $1$ square adjacent horizontally, vertically, or diagonally).
[b]p12.[/b] Let the remainder when $P(x) = x^{2020} - x^{2017} - 1$ is divided by $S(x) = x^3 - 7$ be the polynomial $R(x) = ax^2 + bx + c$ for integers $a$, $b$, $c$. Find the remainder when $R(1)$ is divided by $1000$.
[b]p13.[/b] Let $S(x) = \left \lfloor \frac{2020}{x} \right\rfloor + \left \lfloor \frac{2020}{x + 1} \right\rfloor$. Find the number of distinct values $S(x)$ achieves for integers $x$ in the interval $[1, 2020]$.
[b]p14.[/b] Triangle $\vartriangle ABC$ is inscribed in a circle with center $O$ and has sides $AB = 24$, $BC = 25$, $CA = 26$. Let $M$ be the midpoint of $\overline{AB}$. Points $K$ and $L$ are chosen on sides $\overline{BC}$ and $\overline{CA}$, respectively such that $BK < KC$ and $CL < LA$. Given that $OM = OL = OK$, the area of triangle $\vartriangle MLK$ can be expressed as $\frac{a\sqrt{b}}{c}$ where $a, b, c$ are positive integers, $gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime. Find $a + b + c$.
[b]p15.[/b] Euler's totient function, $\phi (n)$, is defined as the number of positive integers less than $n$ that are relatively prime to $n$. Let $S(n)$ be the set of composite divisors of $n$. Evaluate $$\sum^{50}_{k=1}\left( k - \sum_{d\in S(k)} \phi (d) \right)$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Baltic Way, 11
Let $AB$ and $CD$ be two diameters of the circle $C$. For an arbitrary point $P$ on $C$, let $R$ and $S$ be the feet of the perpendiculars from $P$ to $AB$ and $CD$, respectively. Show that the length of $RS$ is independent of the choice of $P$.
1990 AMC 12/AHSME, 10
An $11\times 11\times 11$ wooden cube is formed by gluing together $11^3$ unit cubes. What is the greatest number of unit cubes that can be seen from a single point?
$\textbf{(A) }328\qquad
\textbf{(B) }329\qquad
\textbf{(C) }330\qquad
\textbf{(D) }331\qquad
\textbf{(E) }332\qquad$
2022 Regional Competition For Advanced Students, 3
Let $ABC$ denote a triangle with $AC\ne BC$. Let $I$ and $U$ denote the incenter and circumcenter of the triangle $ABC$, respectively. The incircle touches $BC$ and $AC$ in the points $D$ and E, respectively. The circumcircles of the triangles $ABC$ and $CDE$ intersect in the two points $C$ and $P$. Prove that the common point $S$ of the lines $CU$ and $P I$ lies on the circumcircle of the triangle $ABC$.
[i](Karl Czakler)[/i]
2009 Cuba MO, 2
Let $I$ be the incenter of an acute riangle $ABC$. Let $C_A(A, AI)$ be the circle with center $A$ and radius $AI$. Circles $C_B(B, BI)$, $C_C(C, CI) $ are defined in an analogous way. Let $X, Y, Z$ be the intersection points of $C_B$ with $C_C$, $C_C$ with $C_A$, $C_A$ with $C_B$ respectively (different than $I$) . Show that if the radius of the circle that passes through the points $X, Y, Z$ is equal to the radius of the circle that passes through points $A$, $B$ and $C$ then triangle $ABC$ is equilateral.
2007 Croatia Team Selection Test, 3
Let $ABC$ be a triangle such that $|AC|>|AB|$. Let $X$ be on line $AB$ (closer to $A$) such that $|BX|=|AC|$ and let $Y$ be on the segment $AC$ such that $|CY|=|AB|$. Intersection of lines $XY$ and bisector of $BC$ is point $P$. Prove that $\angle BPC+\angle BAC = 180^\circ$.
1992 Tournament Of Towns, (334) 2
Let $a$ and $S$ be the length of the side and the area of regular triangle inscribed in a circle of radius $1$. A closed broken line $A_1A_2...A_{51}A_1$ consisting of $51$ segments of the same length $a$ is placed inside the circle. Prove that the sum of areas of the $ 51$ triangles between the neighboring segments
$$A_1A_2A_3, A_2A_3A_4,..., A_{49}A_{50}A_{51}, A_{50}A_{51}A_1, A_{51}A_1A_2$$
is not less than $3S$.
(A. Berzinsh, Riga)
2025 CMIMC Geometry, 1
I’m given a square of side length $7,$ and I want to make a regular tetrahedron from it. Specifically, my strategy is to cut out a net. If I cut out a parallelogram-shaped net that yields the biggest regular tetrahedron, what is the surface area of the resulting tetrahedron?
1983 All Soviet Union Mathematical Olympiad, 369
The $M$ set consists of $k$ non-intersecting segments on the line. It is possible to put an arbitrary segment shorter than $1$ cm on the line in such a way, that his ends will belong to $M$. Prove that the total sum of the segment lengths is not less than $1/k$ cm.
2019 Purple Comet Problems, 3
The diagram below shows a shaded region bounded by two concentric circles where the outer circle has twice the radius of the inner circle. The total boundary of the shaded region has length $36\pi$. Find $n$ such that the area of the shaded region is $n\pi$.
[img]https://cdn.artofproblemsolving.com/attachments/4/5/c9ffdc41c633cc61127ef585a45ee5e6c0f88d.png[/img]
1971 IMO Longlists, 8
Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.
2015 Romania Team Selection Tests, 1
Two circles $\gamma $ and $\gamma'$ cross one another at points $A$ and $B$ . The tangent to $\gamma'$ at $A$ meets $\gamma$ again at $C$ , the tangent to $\gamma$ at $A$ meets $\gamma'$ again at $C'$ , and the line $CC'$ separates the points $A$ and $B$ . Let $\Gamma$ be the circle externally tangent to $\gamma$ , externally tangent to $\gamma'$ , tangent to the line $CC'$, and lying on the same side of $CC'$ as $B$ . Show that the circles $\gamma$ and $\gamma'$ intercept equal segments on one of the tangents to $\Gamma$ through $A$ .
2005 Irish Math Olympiad, 1
Let $ X$ be a point on the side $ AB$ of a triangle $ ABC$, different from $ A$ and $ B$. Let $ P$ and $ Q$ be the incenters of the triangles $ ACX$ and $ BCX$ respectively, and let $ M$ be the midpoint of $ PQ$. Prove that: $ MC>MX$.
2021 Azerbaijan Senior NMO, 3
In $\triangle ABC\ T$ is a point lies on the internal angle bisector of $B$. Let $\omega$ be circle with diameter $BT$.
$\omega$ intersects with $BA$ and $BC$ at $P$ and $Q$,respectively. A circle passes through $A$ and tangent to $\omega$ at $P$ intersects with $AC$ again at $X$ . A circle passes through $B$ and tangent to $\omega$ at $Q$ intersects with $AC$ again at $Y$ . Prove that $TX=TY$
2007 Singapore Team Selection Test, 2
Let $ABCD$ be a convex quadrilateral inscribed in a circle with $M$ and $N$ the midpoints of the diagonals $AC$ and $BD$ respectively. Suppose that $AC$ bisects $\angle BMD$. Prove that $BD$ bisects $\angle ANC$.
1983 National High School Mathematics League, 4
In a tetrahedron, lengths of six edges are $2,3,3,4,5,5$. Find its largest volume.
2008 ITest, 62
Find the number of values of $x$ such that the number of square units in the area of the isosceles triangle with sides $x$, $65$, and $65$ is a positive integer.