Found problems: 25757
2025 Malaysian APMO Camp Selection Test, 3
A fixed triangle $ABC$ is right angled at $A$, and $M$ is a fixed point inside the triangle such that $BM=BA$. Let $O$ be a point on line $BC$, and suppose the ray $OM$ beyond $M$ intersects the interior and exterior angle bisector of $\angle ACM$ at $S$ and $T$ respectively.
Prove that there exist a fixed point $J$ such that circumcircles of triangles $JOM$ and $CST$ are always tangent, regardless of the choice of $O$.
[i]Proposed by Ivan Chan Kai Chin[/i]
LMT Team Rounds 2010-20, 2017
[b]p1.[/b] Suppose that $20\%$ of a number is $17$. Find $20\%$ of $17\%$ of the number.
[b]p2.[/b] Let $A, B, C, D$ represent the numbers $1$ through $4$ in some order, with $A \ne 1$. Find the maximum possible value of $\frac{\log_A B}{C +D}$.
Here, $\log_A B$ is the unique real number $X$ such that $A^X = B$.
[b]p3. [/b]There are six points in a plane, no four of which are collinear. A line is formed connecting every pair of points. Find the smallest possible number of distinct lines formed.
[b]p4.[/b] Let $a,b,c$ be real numbers which satisfy $$\frac{2017}{a}= a(b +c),
\frac{2017}{b}= b(a +c),
\frac{2017}{c}= c(a +b).$$ Find the sum of all possible values of $abc$.
[b]p5.[/b] Let $a$ and $b$ be complex numbers such that $ab + a +b = (a +b +1)(a +b +3)$. Find all possible values of $\frac{a+1}{b+1}$.
[b]p6.[/b] Let $\vartriangle ABC$ be a triangle. Let $X,Y,Z$ be points on lines $BC$, $CA$, and $AB$, respectively, such that $X$ lies on segment $BC$, $B$ lies on segment $AY$ , and $C$ lies on segment $AZ$. Suppose that the circumcircle of $\vartriangle XYZ$ is tangent to lines $AB$, $BC$, and $CA$ with center $I_A$. If $AB = 20$ and $I_AC = AC = 17$ then compute the length of segment $BC$.
[b]p7. [/b]An ant makes $4034$ moves on a coordinate plane, beginning at the point $(0, 0)$ and ending at $(2017, 2017)$. Each move consists of moving one unit in a direction parallel to one of the axes. Suppose that the ant stays within the region $|x - y| \le 2$. Let N be the number of paths the ant can take. Find the remainder when $N$ is divided by $1000$.
[b]p8.[/b] A $10$ digit positive integer $\overline{a_9a_8a_7...a_1a_0}$ with $a_9$ nonzero is called [i]deceptive [/i] if there exist distinct indices $i > j$ such that $\overline{a_i a_j} = 37$. Find the number of deceptive positive integers.
[b]p9.[/b] A circle passing through the points $(2, 0)$ and $(1, 7)$ is tangent to the $y$-axis at $(0, r )$. Find all possible values of $ r$.
[b]p10.[/b] An ellipse with major and minor axes $20$ and $17$, respectively, is inscribed in a square whose diagonals coincide with the axes of the ellipse. Find the area of the square.
PS. You had better use hide for answers.
1990 Baltic Way, 9
Two congruent triangles are inscribed in an ellipse. Are they necessarily symmetric with respect to an axis or the center of the ellipse?
1999 Brazil Team Selection Test, Problem 2
In a triangle $ABC$, the bisector of the angle at $A$ of a triangle $ABC$ intersects the segment $BC$ and the circumcircle of $ABC$ at points $A_1$ and $A_2$, respectively. Points $B_1,B_2,C_1,C_2$ are analogously defined. Prove that
$$\frac{A_1A_2}{BA_2+CA_2}+\frac{B_1B_2}{CB_2+AB_2}+\frac{C_1C_2}{AC_2+BC_2}\ge\frac34.$$
Swiss NMO - geometry, 2012.6
Let $ABCD$ be a parallelogram with at least an angle not equal to $90^o$ and $k$ the circumcircle of the triangle $ABC$. Let $E$ be the diametrically opposite point of $B$. Show that the circumcircle of the triangle $ADE$ and $k$ have the same radius.
1984 Tournament Of Towns, (075) T1
In convex hexagon $ABCDEF, AB$ is parallel to $CF, CD$ is parallel to $BE$ and $EF$ is parallel to $AD$. Prove that the areas of triangles $ACE$ and $BDF$ are equal .
2002 National Olympiad First Round, 17
Let $ABCD$ be a trapezoid and a tangential quadrilateral such that $AD || BC$ and $|AB|=|CD|$. The incircle touches $[CD]$ at $N$. $[AN]$ and $[BN]$ meet the incircle again at $K$ and $L$, respectively. What is $\dfrac {|AN|}{|AK|} + \dfrac {|BN|}{|BL|}$?
$
\textbf{(A)}\ 8
\qquad\textbf{(B)}\ 9
\qquad\textbf{(C)}\ 10
\qquad\textbf{(D)}\ 12
\qquad\textbf{(E)}\ 16
$
1976 Canada National Olympiad, 6
If $ A,B,C,D$ are four points in space, such that
\[ \angle ABC\equal{}\angle BCD\equal{}\angle CDA\equal{}\angle DAB\equal{}\pi/2,
\]
prove that $ A,B,C,D$ lie in a plane.
2015 Irish Math Olympiad, 1
In the triangle $ABC$, the length of the altitude from $A$ to $BC$ is equal to $1$. $D$ is the midpoint of $AC$. What are the possible lengths of $BD$?
2024 Malaysian Squad Selection Test, 1
A cyclic quadrilateral $ABCD$ has diameter $AC$ with circumcircle $\omega$. Let $K$ be the foot of the perpendicular from $C$ to $BD$, and the tangent to $\omega$ at $A$ meets $BD$ at $T$. Let the line $AK$ meets $\omega$ at $X$ and choose a point $Y$ on line $AK$ such that $\angle TYA=90^{\circ}$. Prove that $AY=KX$.
[i]Proposed by Anzo Teh Zhao Yang[/i]
2008 Hanoi Open Mathematics Competitions, 9
Consider a right -angle triangle $ABC$ with $A=90^{o}$, $AB=c$ and $AC=b$. Let $P\in AC$ and $Q\in AB$ such that $\angle APQ=\angle ABC$ and $\angle AQP = \angle ACB$. Calculate $PQ+PE+QF$, where $E$ and $F$ are the projections of $B$ and $Q$ onto $BC$, respectively.
2023 Grosman Mathematical Olympiad, 7
The plane is colored with two colors so that the following property holds: for each real $a>0$ there is an equilateral triangle of side length $a$ whose $3$ vertices are of the same color.
Prove that for any three numbers $a,b,c>0$ for which the sum of any two is greater than the third there is a triangle with sides $a$, $b$, and $c$ whose $3$ vertices are of the same color.
2018 Sharygin Geometry Olympiad, 2
A cyclic quadrilateral $ABCD$ is given. The lines $AB$ and $DC$ meet at point $E$, and the lines $BC$ and $AD$ meet at point $F$. Let $I$ be the incenter of triangle $AED$, and a ray with origin $F$ be perpendicular to the bisector of angle AID. In which ratio this ray dissects the angle $AFB$?
2018 Ukraine Team Selection Test, 2
Let $ABCC_1B_1A_1$ be a convex hexagon such that $AB=BC$, and suppose that the line segments $AA_1, BB_1$, and $CC_1$ have the same perpendicular bisector. Let the diagonals $AC_1$ and $A_1C$ meet at $D$, and denote by $\omega$ the circle $ABC$. Let $\omega$ intersect the circle $A_1BC_1$ again at $E \neq B$. Prove that the lines $BB_1$ and $DE$ intersect on $\omega$.
2004 India IMO Training Camp, 1
Let $ABC$ be an acute-angled triangle and $\Gamma$ be a circle with $AB$ as diameter intersecting $BC$ and $CA$ at $F ( \not= B)$ and $E (\not= A)$ respectively. Tangents are drawn at $E$ and $F$ to $\Gamma$ intersect at $P$. Show that the ratio of the circumcentre of triangle $ABC$ to that if $EFP$ is a rational number.
1963 All Russian Mathematical Olympiad, 032
Given equilateral triangle with the side $l$. What is the minimal length $d$ of a brush (segment), that will paint all the triangle, if its ends are moving along the sides of the triangle.
2005 Austria Beginners' Competition, 4
We are given the triangle $ABC$ with an area of $2000$. Let $P,Q,R$ be the midpoints of the sides $BC$, $AC$, $AB$. Let $U,V,W$ be the midpoints of the sides $QR$, $PR$, $PQ$. The lengths of the line segments $AU$, $BV$, $CW$ are $x$, $y$, $z$. Show that there exists a triangle with side lengths $x$, $y$ and $z$ and caluclate it's area.
2007 Princeton University Math Competition, 9
Find $\frac{area(CDF)}{area(CEF)}$ in the figure.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(5.75cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -2, xmax = 21, ymin = -2, ymax = 16; /* image dimensions */
/* draw figures */
draw((0,0)--(20,0));
draw((13.48,14.62)--(7,0));
draw((0,0)--(15.93,9.12));
draw((13.48,14.62)--(20,0));
draw((13.48,14.62)--(0,0));
label("6",(15.16,12.72),SE*labelscalefactor);
label("10",(18.56,5.1),SE*labelscalefactor);
label("7",(3.26,-0.6),SE*labelscalefactor);
label("13",(13.18,-0.71),SE*labelscalefactor);
label("20",(5.07,8.33),SE*labelscalefactor);
/* dots and labels */
dot((0,0),dotstyle);
label("$B$", (-1.23,-1.48), NE * labelscalefactor);
dot((20,0),dotstyle);
label("$C$", (19.71,-1.59), NE * labelscalefactor);
dot((7,0),dotstyle);
label("$D$", (6.77,-1.64), NE * labelscalefactor);
dot((13.48,14.62),dotstyle);
label("$A$", (12.36,14.91), NE * labelscalefactor);
dot((15.93,9.12),dotstyle);
label("$E$", (16.42,9.21), NE * labelscalefactor);
dot((9.38,5.37),dotstyle);
label("$F$", (9.68,4.5), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
LMT Guts Rounds, 2022 S
[u]Round 6[/u]
[b]p16.[/b] Given that $x$ and $y$ are positive real numbers such that $x^3+y = 20$, the maximum possible value of $x + y$ can be written as $\frac{a\sqrt{b}}{c}$ +d where $a$, $b$, $c$, and $d$ are positive integers such that $gcd(a,c) = 1$ and $b$ is square-free. Find $a +b +c +d$.
[b]p17.[/b] In $\vartriangle DRK$ , $DR = 13$, $DK = 14$, and $RK = 15$. Let $E$ be the intersection of the altitudes of $\vartriangle DRK$. Find the value of $\lfloor DE +RE +KE \rfloor$.
[b]p18.[/b] Subaru the frog lives on lily pad $1$. There is a line of lily pads, numbered $2$, $3$, $4$, $5$, $6$, and $7$. Every minute, Subaru jumps from his current lily pad to a lily pad whose number is either $1$ or $2$ greater, chosen at random from valid possibilities. There are alligators on lily pads $2$ and $5$. If Subaru lands on an alligator, he dies and time rewinds back to when he was on lily pad number $1$. Find the expected number of jumps it takes Subaru to reach pad $7$.
[u]Round 7[/u]
This set has problems whose answers depend on one another.
[b]p19.[/b] Let $B$ be the answer to Problem $20$ and let $C$ be the answer to Problem $21$. Given that $$f (x) = x^3-Bx-C = (x-r )(x-s)(x-t )$$ where $r$, $s$, and $t$ are complex numbers, find the value of $r^2+s^2+t^2$.
[b]p20.[/b] Let $A$ be the answer to Problem $19$ and let $C$ be the answer to Problem $21$. Circles $\omega_1$ and $\omega_2$ meet at points $X$ and $Y$ . Let point $P \ne Y$ be the point on $\omega_1$ such that $PY$ is tangent to $\omega_2$, and let point $Q \ne Y$ be the point on $\omega_2$ such that $QY$ is tangent to $\omega_1$. Given that $PX = A$ and $QX =C$, find $XY$ .
[b]p21.[/b] Let $A$ be the answer to Problem $19$ and let $B$ be the answer to Problem $20$. Given that the positive difference between the number of positive integer factors of $A^B$ and the number of positive integer factors of $B^A$ is $D$, and given that the answer to this problem is an odd prime, find $\frac{D}{B}-40$.
[u]Round 8[/u]
[b]p22.[/b] Let $v_p (n)$ for a prime $p$ and positive integer $n$ output the greatest nonnegative integer $x$ such that $p^x$ divides $n$. Find $$\sum^{50}_{i=1}\sum^{i}_{p=1} { v_p (i )+1 \choose 2},$$ where the inner summation only sums over primes $p$ between $1$ and $i$ .
[b]p23.[/b] Let $a$, $b$, and $c$ be positive real solutions to the following equations. $$\frac{2b^2 +2c^2 -a^2}{4}= 25$$
$$\frac{2c^2 +2a^2 -b^2}{4}= 49$$
$$\frac{2a^2 +2b^2 -c^2}{4}= 64$$ The area of a triangle with side lengths $a$, $b$, and $c$ can be written as $\frac{x\sqrt{y}}{z}$ where $x$ and $z$ are relatively prime positive integers and $y$ is square-free. Find $x + y +z$.
[b]p24.[/b] Alan, Jiji, Ina, Ryan, and Gavin want to meet up. However, none of them know when to go, so they each pick a random $1$ hour period from $5$ AM to $11$ AM to meet up at Alan’s house. Find the probability that there exists a time when all of them are at the house at one time.
[b]Round 9 [/b]
[b]p25.[/b] Let $n$ be the number of registered participantsin this $LMT$. Estimate the number of digits of $\left[ {n \choose 2} \right]$ in base $10$. If your answer is $A$ and the correct answer is $C$, then your score will be
$$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$
[b]p26.[/b] Let $\gamma$ be theminimum value of $x^x$ over all real numbers $x$. Estimate $\lfloor 10000\gamma \rfloor$. If your answer is $A$ and the correct answer is $C$, then your score will be
$$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$
[b]p27.[/b] Let $$E = \log_{13} 1+log_{13}2+log_{13}3+...+log_{13}513513.$$ Estimate $\lfloor E \rfloor$. If your answer is $A$ and the correct answer is $C$, your score will be $$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3167127p28823220]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2008 Cono Sur Olympiad, 2
Let $P$ be a point in the interior of triangle $ABC$. Let $X$, $Y$, and $Z$ be points on sides $BC$, $AC$, and $AB$ respectively, such that
$<PXC=<PYA=<PZB$.
Let $U$, $V$, and $W$ be points on sides $BC$, $AC$, and $AB$, respectively, or on their extensions if necessary, with $X$ in between $B$ and $U$, $Y$ in between $C$ and $V$, and $Z$ in between $A$ and $W$, such that $PU=2PX$, $PV=2PY$, and $PW=2PZ$. If the area of triangle $XYZ$ is $1$, find the area of triangle $UVW$.
2021 Saudi Arabia Training Tests, 5
Let $ABCD$ be a rectangle with $P$ lies on the segment $AC$. Denote $Q$ as a point on minor arc $PB$ of $(PAB)$ such that $QB = QC$. Denote $R$ as a point on minor arc $PD$ of $(PAD)$ such that $RC = RD$. The lines $CB$, $CD$ meet $(CQR)$ again at $M, N$ respectively. Prove that $BM = DN$.
by Tran Quang Hung
Durer Math Competition CD Finals - geometry, 2018.C3
Points $A, B, C, D$ are located in the plane as follows: sections $AB$ and $CD$ are perpendicular to each other and are of equal length, moreover, D is just the trisection point of segment $AB$ closer to $A$. The perpendicular from point $D$ on segment $BC$ intersects it at $E$. Let the trisection point of segment $DE$ closer to $E$ be $H$. Prove that segments $CH$ and the sections $AE$ are perpendicular to each other.
2002 National Olympiad First Round, 9
Let $ABC$ be triangle such that $|AB| = 5$, $|BC| = 9$ and $|AC| = 8$. The angle bisector of $\widehat{BCA}$ meets $BA$ at $X$ and the angle bisector of $\widehat{CAB}$ meets $BC$ at $Y$. Let $Z$ be the intersection of lines $XY$ and $AC$. What is $|AZ|$?
$
\textbf{a)}\ \sqrt{104}
\qquad\textbf{b)}\ \sqrt{145}
\qquad\textbf{c)}\ \sqrt{89}
\qquad\textbf{d)}\ 9
\qquad\textbf{e)}\ 10
$
1998 China Team Selection Test, 1
In acute-angled $\bigtriangleup ABC$, $H$ is the orthocenter, $O$ is the circumcenter and $I$ is the incenter. Given that $\angle C > \angle B > \angle A$, prove that $I$ lies within $\bigtriangleup BOH$.
2012 IFYM, Sozopol, 7
$\Delta ABC$ is such that $AC+BC=2$ and the sum of its altitude through $C$ and its base $AB$ is $CD+AB=\sqrt{5}$. Find the sides of the triangle.