Found problems: 25757
2017 Romania Team Selection Test, P4
Determine the smallest radius a circle passing through EXACTLY three lattice points may have.
2001 Balkan MO, 4
A cube side 3 is divided into 27 unit cubes. The unit cubes are arbitrarily labeled 1 to 27 (each cube is given a different number). A move consists of swapping the cube labeled 27 with one of its 6 neighbours. Is it possible to find a finite sequence of moves at the end of which cube 27 is in its original position, but cube $n$ has moved to the position originally occupied by $27-n$ (for each $n = 1, 2, \ldots , 26$)?
2024 JHMT HS, 8
Points $A$, $B$, $C$, and $D$ lie on a circle $\Gamma$, in that order, with $AB=5$ and $AD=3$. The angle bisector of $\angle ABC$ intersects $\Gamma$ at point $E$ on the opposite side of $\overleftrightarrow{CD}$ as $A$ and $B$. Assume that $\overline{BE}$ is a diameter of $\Gamma$ and $AC=AE$. Compute $DE$.
2018 Romanian Master of Mathematics, 1
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .
1984 Czech And Slovak Olympiad IIIA, 5
Find all natural numbers $n$ for which there exists a convex polyhedron with $n$ edges, with exactly one vertex having four edges and all other vertices having $3$ edges.
1992 Irish Math Olympiad, 5
Let $ABC$ be a triangle such that the coordinates of the points $A$ and $B$ are rational numbers. Prove that the coordinates of $C$ are rational if, and only if, $\tan A$, $\tan B$, and $\tan C$, when defined, are all rational numbers.
2006 Iran Team Selection Test, 3
Suppose $ABC$ is a triangle with $M$ the midpoint of $BC$.
Suppose that $AM$ intersects the incircle at $K,L$.
We draw parallel line from $K$ and $L$ to $BC$ and name their second intersection point with incircle $X$ and $Y$. Suppose that $AX$ and $AY$ intersect $BC$ at $P$ and $Q$.
Prove that $BP=CQ$.
2018 Bangladesh Mathematical Olympiad, 5
Four circles are drawn with the sides of quadrilateral $ABCD$ as diameters. The two circles passing through $A$ meet again at $E$ . The two circles passing through $B$ meet again at $F$ . The two circles passing through $C$ meet again at $G$. The two circles passing through $D$ meet again at $H$. Suppose, $ E, F, G,H $ are all distinct. Is the quadrilateral $EFGH$ similar to $ABCD$ ? Show with proof.
2008 Indonesia MO, 1
Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that cicumcircles of these three triangles are concurrent.
2004 CentroAmerican, 2
Let $ABCD$ be a trapezium such that $AB||CD$ and $AB+CD=AD$. Let $P$ be the point on $AD$ such that $AP=AB$ and $PD=CD$.
$a)$ Prove that $\angle BPC=90^{\circ}$.
$b)$ $Q$ is the midpoint of $BC$ and $R$ is the point of intersection between the line $AD$ and the circle passing through the points $B,A$ and $Q$. Show that the points $B,P,R$ and $C$ are concyclic.
2011 Korea National Olympiad, 1
Two circles $ O, O'$ having same radius meet at two points, $ A,B (A \not = B) $. Point $ P,Q $ are each on circle $ O $ and $ O' $ $(P \not = A,B ~ Q\not = A,B )$. Select the point $ R $ such that $ PAQR $ is a parallelogram. Assume that $ B, R, P, Q $ is cyclic. Now prove that $ PQ = OO' $.
2004 IMO Shortlist, 7
For a given triangle $ ABC$, let $ X$ be a variable point on the line $ BC$ such that $ C$ lies between $ B$ and $ X$ and the incircles of the triangles $ ABX$ and $ ACX$ intersect at two distinct points $ P$ and $ Q.$ Prove that the line $ PQ$ passes through a point independent of $ X$.
2006 CHKMO, 2
Suppose there are $4n$ line segments of unit length inside a circle of radius $n$. Furthermore, a straight line $L$ is given. Prove that there exists a straight line $L'$ that is either parallel or perpendicular to $L$ and that $L'$ cuts at least two of the given line segments.
2015 CHMMC (Fall), 6
The icosahedron is a convex, regular polyhedron consisting of $20$ equilateral triangle for faces. A particular icosahedron given to you has labels on each of its vertices, edges, and faces. Each minute, you uniformly at random pick one of the labels on the icosahedron. If the label is on a vertex, you remove it. If the label is on an edge, you delete the label on the edge along with any labels still on the vertices of that edge. If the label is on a face, you delete the label on the face along with any labels on the edges and vertices which make up that face. What is the expected number of minutes that pass before you have removed all labels from the icosahedron?
2018 239 Open Mathematical Olympiad, 8-9.2
On the hypotenuse $AB$ of a right-angled triangle $ABC$, point $R$ is chosen, on the cathetus $BC$ a point $T$, and on the segment $AT$ a point $S$ are chosen in such a way that the angles $\angle ART$ and $\angle ASC$ are right angles. Points $M$ and $N$ are the midpoints of the segments $CB$ and $CR$, respectively. Prove that points $M$, $T$, $S$, and $N$ lie on the same circle.
[i]Proposed by S. Berlov[/i]
ABMC Team Rounds, 2023
[u]Round 1[/u]
[b]1.1.[/b] A classroom has $29$ students. A teacher needs to split up the students into groups of at most $4$. What is the minimum number of groups needed?
[b]1.2.[/b] On his history map quiz, Eric recalls that Sweden, Norway and Finland are adjacent countries, but he has
forgotten which is which, so he labels them in random order. The probability that he labels all three countries
correctly can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]1.3.[/b] In a class of $40$ sixth graders, the class average for their final test comes out to be $90$ (out of a $100$). However, a student brings up an issue with problem $5$, and $10$ students receive credit for this question, bringing the class average to a $90.75$. How many points was problem $5$ worth?
[u]Round 2[/u]
[b]2.1.[/b] Compute $1 - 2 + 3 - 4 + ... - 2022 + 2023$.
[b]2.2.[/b] In triangle $ABC$, $\angle ABC = 75^o$. Point $D$ lies on side $AC$ such that $BD = CD$ and $\angle BDC$ is a right angle. Compute the measure of $\angle A$.
[b]2.3.[/b] Joe is rolling three four-sided dice each labeled with positive integers from $1$ to $4$. The probability the sum of the numbers on the top faces of the dice is $6$ can be written as $\frac{p}{q}$ where $p$ and $q$ are relatively prime integers. Find $p + q$.
[u]Round 3[/u]
[b]3.1.[/b] For positive integers $a, b, c, d$ that satisfy $a + b + c + d = 23$, what is the maximum value of $abcd$?
[b]3.2.[/b] A buckball league has twenty teams. Each of the twenty teams plays exactly five games with each of the other teams. If each game takes 1 hour and thirty minutes, then how many total hours are spent playing games?
[b]3.3.[/b] For a triangle $\vartriangle ABC$, let $M, N, O$ be the midpoints of $AB$, $BC$, $AC$, respectively. Let $P, Q, R$ be points on $AB$, $BC$, $AC$ such that $AP =\frac13 AB$, $BQ =\frac13 BC$, and $CR =\frac13 AC$. The ratio of the areas of $\vartriangle MNO$ and $\vartriangle P QR$ can be expressed as $\frac{m}{n}$ , where $ m$ and $n$ are relatively prime positive integers. Find $m + n$.
[u]Round 4[/u]
[b]4.1.[/b] $2023$ has the special property that leaves a remainder of $1$ when divided by $2$, $21$ when divided by $22$, and $22$ when divided by $23$. Let $n$ equal the lowest integer greater than $2023$ with the above properties. What is $n$?
[b]4.2.[/b] Ants $A, B$ are on points $(0, 0)$ and $(3, 3)$ respectively, and ant A is trying to get to $(3, 3)$ while ant $B$ is trying to get to $(0, 0)$. Every second, ant $A$ will either move up or right one with equal probability, and ant $B$ will move down or left one with equal probability. The probability that the ants will meet each other be $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]4.3.[/b] Find the number of trailing zeros of $100!$ in base $ 49$.
PS. You should use hide for answers. Rounds 5-9 have been posted [url=https://artofproblemsolving.com/community/c3h3129723p28347714]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Purple Comet Problems, 12
Right triangle ABC with a right angle at A has AB = 20 and AC = 15. Point D is on AB with BD = 2. Points E and F are placed on ray CA and ray CB, respectively, such that CD is a median of $\triangle$ CEF. Find the area of $\triangle$CEF.
Swiss NMO - geometry, 2014.1
The points $A, B, C$ and $D$ lie in this order on the circle $k$. Let $t$ be the tangent at $k$ through $C$ and $s$ the reflection of $AB$ at $AC$. Let $G$ be the intersection of the straight line $AC$ and $BD$ and $H$ the intersection of the straight lines $s$ and $CD$. Show that $GH$ is parallel to $t$.
1989 Tournament Of Towns, (224) 2
The lengths of the sides of an acute angled triangle are successive integers. Prove that the altitude to the second longest side divides this side into two segments whose difference in length equals $4$.
1967 IMO Longlists, 22
Let $k_1$ and $k_2$ be two circles with centers $O_1$ and $O_2$ and equal radius $r$ such that $O_1O_2 = r$. Let $A$ and $B$ be two points lying on the circle $k_1$ and being symmetric to each other with respect to the line $O_1O_2$. Let $P$ be an arbitrary point on $k_2$. Prove that
\[PA^2 + PB^2 \geq 2r^2.\]
Novosibirsk Oral Geo Oly VII, 2019.5
Given a triangle $ABC$, in which the angle $B$ is three times the angle $C$. On the side $AC$, point $D$ is chosen such that the angle $BDC$ is twice the angle $C$. Prove that $BD + BA = AC$.
2005 District Olympiad, 3
Let $ABC$ be a non-right-angled triangle and let $H$ be its orthocenter. Let $M_1,M_2,M_3$ be the midpoints of the sides $BC$, $CA$, $AB$ respectively. Let $A_1$, $B_1$, $C_1$ be the symmetrical points of $H$ with respect to $M_1$, $M_2$ and $M_3$ respectively, and let $A_2$, $B_2$, $C_2$ be the orthocenters of the triangles $BA_1C$, $CB_1A$ and $AC_1B$ respectively. Prove that:
a) triangles $ABC$ and $A_2B_2C_2$ have the same centroid;
b) the centroids of the triangles $AA_1A_2$, $BB_1B_2$, $CC_1C_2$ form a triangle similar with $ABC$.
2012 Baltic Way, 13
Let $ABC$ be an acute triangle, and let $H$ be its orthocentre. Denote by $H_A$, $H_B$, and $H_C$ the second intersection of the circumcircle with the altitudes from $A$, $B$, and $C$ respectively. Prove that the area of triangle $H_A H_B H_C$ does not exceed the area of triangle $ABC$.
2024 Turkey MO (2nd Round), 2
Let $\triangle ABC$ be an acute triangle, where $H$ is the orthocenter and $D,E,F$ are the feet of the altitudes from $A,B,C$ respectively. A circle tangent to $(DEF)$ at $D$ intersects the line $EF$ at $P$ and $Q$. Let $R$ and $S$ be the second intersection points of the circumcircle of triangle $\triangle BHC$ with $PH$ and $QH$, respectively. Let $T$ be the point on the line $BC$ such that $AT\perp EF$.
Prove that the points $R,S,D,T$ are concyclic.
2009 Harvard-MIT Mathematics Tournament, 5
Circle $B$ has radius $6\sqrt{7}$. Circle $A$, centered at point $C$, has radius $\sqrt{7}$ and is contained in $B$. Let $L$ be the locus of centers $C$ such that there exists a point $D$ on the boundary of $B$ with the following property: if the tangents from $D$ to circle $A$ intersect circle $B$ again at $X$ and $Y$, then $XY$ is also tangent to $A$. Find the area contained by the boundary of $L$.