Found problems: 25757
Ukrainian TYM Qualifying - geometry, XI.15
Let $I$ be the point of intersection of the angle bisectors of the $\vartriangle ABC$, $W_1,W_2,W_3$ be point of intersection of lines $AI, BI, CI$ with the circle circumscribed around the triangle, $r$ and $R$ be the radii of inscribed and circumscribed circles respectively. Prove the inequality $$IW_1+ IW_2 + IW_3\ge 2R + \sqrt{2Rr.}$$
2011 Kazakhstan National Olympiad, 6
We call a square table of a binary, if at each cell is written a single number 0 or 1. The binary table is called regular if each row and each column exactly two units. Determine the number of regular size tables $n\times n$ ($n> 1$ - given a fixed positive integer). (We can assume that the rows and columns of the tables are numbered: the cases of coincidence in turn, reflect, and so considered different).
2020 May Olympiad, 3
A clueless ant makes the following route: starting at point $ A $ goes $ 1$ cm north, then $ 2$ cm east, then $ 3$ cm south, then $ 4$ cm west, immediately $ 5$ cm north, continues $ 6$ cm east, and so on, finally $ 41$ cm north and ends in point $ B $. Calculate the distance between $ A $ and $ B $ (in a straight line).
2014 India Regional Mathematical Olympiad, 6
Let $D,E,F$ be the points of contact of the incircle of an acute-angled triangle $ABC$ with $BC,CA,AB$ respectively. Let $I_1,I_2,I_3$ be the incentres of the triangles $AFE, BDF, CED$, respectively. Prove that the lines $I_1D, I_2E, I_3F$ are concurrent.
2014 Online Math Open Problems, 17
Let $AXYBZ$ be a convex pentagon inscribed in a circle with diameter $\overline{AB}$. The tangent to the circle at $Y$ intersects lines $BX$ and $BZ$ at $L$ and $K$, respectively. Suppose that $\overline{AY}$ bisects $\angle LAZ$ and $AY=YZ$. If the minimum possible value of \[ \frac{AK}{AX} + \left( \frac{AL}{AB} \right)^2 \] can be written as $\tfrac{m}{n} + \sqrt{k}$, where $m$, $n$ and $k$ are positive integers with $\gcd(m,n)=1$, compute $m+10n+100k$.
[i]Proposed by Evan Chen[/i]
2015 AoPS Mathematical Olympiad, 5
Let $ABC$ be a triangle with orthocenter $h$. Let $AH$, $BH$, and $CH$ intersect the circumcircle of $\triangle ABC$ at points $D$, $E$, and $F$. Find the maximum value of $\frac{[DEF]}{[ABC]}$. (Here $[X]$ denotes the area of $X$.)
[i]Proposed by tkhalid.[/i]
2014 Sharygin Geometry Olympiad, 15
Let $ABC$ be a non-isosceles triangle. The altitude from $A$, the bisector from $B$ and the median from $C$ concur at point $K$.
a) Which of the sidelengths of the triangle is medial (intermediate in length)?
b) Which of the lengths of segments $AK, BK, CK$ is medial (intermediate in length)?
2010 Mathcenter Contest, 3
Let triangle $ABC$ be a triangle right at $B$. The inscribed circle is tangent to sides $BC,CA,AB$ at points $D,E,F$, respectively. Let $CF$ intersect the circle at the point $P$. If $\angle APB=90^{\circ}$, find the value of $\dfrac{CP+CD}{PF}$.
[i](tatari/nightmare)[/i]
2013 Greece Team Selection Test, 3
Given is a triangle $ABC$.On the extensions of the side $AB$ we consider points $A_1,B_1$ such that $AB_1=BA_1$ (with $A_1$ lying closer to $B$).On the extensions of the side $BC$ we consider points $B_4,C_4$ such that $CB_4=BC_4$ (with $B_4$ lying closer to $C$).On the extensions of the side $AC$ we consider points $C_1,A_4$ such that $AC_1=CA_4$ (with $C_1$ lying closer to $A$).On the segment $A_1A_4$ we consider points $A_2,A_3$ such that $A_1A_2=A_3A_4=mA_1A_4$ where $0<m<\frac{1}{2}$.Points $B_2,B_3$ and $C_2,C_3$ are defined similarly,on the segments $B_1B_4,C_1C_4$ respectively.If $D\equiv BB_2\cap CC_2 \ , \ E\equiv AA_3\cap CC_2 \ , \ F\equiv AA_3\cap BB_3$, $\ G\equiv BB_3\cap CC_3 \ , \ H\equiv AA_2\cap CC_3$ and $I\equiv AA_2\cap BB_2$,prove that the diagonals $DG,EH,FI$ of the hexagon $DEFGHI$ are concurrent.
[hide=Diagram][asy]import graph; size(12cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.984603447540051, xmax = 21.28710511372557, ymin = -6.555010307713199, ymax = 10.006614273002825; /* image dimensions */
pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274);
draw((1.1583842866003107,4.638449718549554)--(0.,0.)--(7.,0.)--cycle, aqaqaq);
/* draw figures */
draw((1.1583842866003107,4.638449718549554)--(0.,0.), uququq);
draw((0.,0.)--(7.,0.), uququq);
draw((7.,0.)--(1.1583842866003107,4.638449718549554), uququq);
draw((1.1583842866003107,4.638449718549554)--(1.623345080409327,6.500264738079558));
draw((0.,0.)--(-0.46496079380901606,-1.8618150195300045));
draw((-3.0803965232149757,0.)--(0.,0.));
draw((7.,0.)--(10.080396523214976,0.));
draw((1.1583842866003107,4.638449718549554)--(0.007284204967787214,5.552463941947242));
draw((7.,0.)--(8.151100081632526,-0.9140142233976905));
draw((-0.46496079380901606,-1.8618150195300045)--(8.151100081632526,-0.9140142233976905));
draw((-3.0803965232149757,0.)--(0.007284204967787214,5.552463941947242));
draw((10.080396523214976,0.)--(1.623345080409327,6.500264738079558));
draw((0.,0.)--(3.7376079411107392,4.8751985535596685));
draw((-0.7646359770779035,4.164347956460432)--(7.,0.));
draw((1.1583842866003107,4.638449718549554)--(5.997084862772141,-1.150964422430769));
draw((0.,0.)--(7.966133662513563,1.6250661845198895));
draw((-2.308476341169285,1.3881159854868106)--(7.,0.));
draw((1.1583842866003107,4.638449718549554)--(1.6890544250513695,-1.624864820496926));
draw((2.0395968109217,2.660375186246903)--(2.9561195753832448,0.6030390855677443), linetype("2 2"));
draw((3.4388364046369224,1.909931693481981)--(1.4816619768719694,0.8229159040072803), linetype("2 2"));
draw((1.3969966570225139,1.8221911417546572)--(4.301698851378541,0.8775330211014288), linetype("2 2"));
/* dots and labels */
dot((1.1583842866003107,4.638449718549554),linewidth(3.pt) + dotstyle);
label("$A$", (0.6263408942608304,4.2), NE * labelscalefactor);
dot((0.,0.),linewidth(3.pt) + dotstyle);
label("$B$", (-0.44658827292841696,0.04763072114368767), NE * labelscalefactor);
dot((7.,0.),linewidth(3.pt) + dotstyle);
label("$C$", (7.008893888822507,0.18518574257820614), NE * labelscalefactor);
dot((1.623345080409327,6.500264738079558),linewidth(3.pt) + dotstyle);
label("$B_1$", (1.7267810657369815,6.6777827542874775), NE * labelscalefactor);
dot((-0.46496079380901606,-1.8618150195300045),linewidth(3.pt) + dotstyle);
label("$A_1$", (-1.1068523758141076,-1.6305405403574376), NE * labelscalefactor);
dot((10.080396523214976,0.),linewidth(3.pt) + dotstyle);
label("$B_4$", (10.062615364668826,-0.612633381742001), NE * labelscalefactor);
dot((-3.0803965232149757,0.),linewidth(3.pt) + dotstyle);
label("$C_4$", (-3.3077327187664096,-0.612633381742001), NE * labelscalefactor);
dot((0.007284204967787214,5.552463941947242),linewidth(3.pt) + dotstyle);
label("$C_1$", (0.1036318128096586,5.714897604245849), NE * labelscalefactor);
dot((8.151100081632526,-0.9140142233976905),linewidth(3.pt) + dotstyle);
label("$A_4$", (8.521999124602214,-1.1903644717669786), NE * labelscalefactor);
dot((-2.308476341169285,1.3881159854868106),linewidth(3.pt) + dotstyle);
label("$C_3$", (-2.9776006673235647,1.7808239912186203), NE * labelscalefactor);
dot((-0.7646359770779035,4.164347956460432),linewidth(3.pt) + dotstyle);
label("$C_2$", (-1.1618743843879151,4.504413415622086), NE * labelscalefactor);
dot((1.6890544250513695,-1.624864820496926),linewidth(3.pt) + dotstyle);
label("$A_2$", (1.6167370485893664,-2.125738617521704), NE * labelscalefactor);
dot((5.997084862772141,-1.150964422430769),linewidth(3.pt) + dotstyle);
label("$A_3$", (6.211074764502297,-1.603029536070534), NE * labelscalefactor);
dot((7.966133662513563,1.6250661845198895),linewidth(3.pt) + dotstyle);
label("$B_3$", (8.081823056011753,1.7808239912186203), NE * labelscalefactor);
dot((3.7376079411107392,4.8751985535596685),linewidth(3.pt) + dotstyle);
label("$B_2$", (3.8451283958285725,5.027122497073257), NE * labelscalefactor);
dot((2.0395968109217,2.660375186246903),linewidth(3.pt) + dotstyle);
label("$D$", (1.7542920700238853,2.991308179842383), NE * labelscalefactor);
dot((3.4388364046369224,1.909931693481981),linewidth(3.pt) + dotstyle);
label("$E$", (3.542507348672631,2.083445038374561), NE * labelscalefactor);
dot((4.301698851378541,0.8775330211014288),linewidth(3.pt) + dotstyle);
label("$F$", (4.22,0.93), NE * labelscalefactor);
dot((2.9561195753832448,0.6030390855677443),linewidth(3.pt) + dotstyle);
label("$G$", (2.909754250073844,0.10265272971749505), NE * labelscalefactor);
dot((1.4816619768719694,0.8229159040072803),linewidth(3.pt) + dotstyle);
label("$H$", (0.9839839499905795,0.43278478116033936), NE * labelscalefactor);
dot((1.3969966570225139,1.8221911417546572),linewidth(3.pt) + dotstyle);
label("$I$", (0.9839839499905795,1.8908680083662353), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/hide]
2018 NZMOC Camp Selection Problems, 8
Let $\lambda$ be a line and let $M, N$ be two points on $\lambda$. Circles $\alpha$ and $\beta$ centred at $A$ and $B$ respectively are both tangent to $\lambda$ at $M$, with $A$ and $B$ being on opposite sides of $\lambda$. Circles $\gamma$ and $\delta$ centred at $C$ and $D$ respectively are both tangent to $\lambda$ at $N$, with $C$ and $D$ being on opposite sides of $\lambda$. Moreover $A$ and $C$ are on the same side of $\lambda$. Prove that if there exists a circle tangent to all circles $\alpha, \beta, \gamma, \delta$ containing all of them in its interior, then the lines $AC, BD$ and $\lambda$ are either concurrent or parallel.
1984 AMC 12/AHSME, 17
A right triangle $ABC$ with hypotenuse $AB$ has side $AC = 15$. Altitude $CH$ divides $AB$ into segments $AH$ And $HB$, with $HB = 16$. The area of $\triangle ABC$ is:
[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(11pt));
pair A = origin, H = (5,0), B = (13,0), C = (5,6.5);
draw(C--A--B--C--H^^rightanglemark(C,H,B,16));
label("$A$",A,W);
label("$B$",B,E);
label("$C$",C,N);
label("$H$",H,S);
label("$15$",C/2,NW);
label("$16$",(H+B)/2,S);
[/asy]
$\textbf{(A) }120\qquad
\textbf{(B) }144\qquad
\textbf{(C) }150\qquad
\textbf{(D) }216\qquad
\textbf{(E) }144\sqrt5$
2021 Purple Comet Problems, 9
Find $k$ such that $k\pi$ is the area of the region of points in the plane satisfying $$\frac{x^2+y^2+1}{11} \le x \le \frac{x^2+y^2+1}{7}.$$
2001 Pan African, 2
Let $n$ be a positive integer. A child builds a wall along a line with $n$ identical cubes. He lays the first cube on the line and at each subsequent step, he lays the next cube either on the ground or on the top of another cube, so that it has a common face with the previous one. How many such distinct walls exist?
MIPT student olimpiad autumn 2022, 4
In $R^n$ space is given a finite set of points $X$. It is known that for any
subset $Y \subseteq X$ of at most $n+1$ points, there is a unit ball $B_Y$ containing $Y$ and not containing the origin. Prove that there is a unit a ball $B_X$ containing $X$ and not containing the origin.
2013 JBMO TST - Turkey, 3
Two players $A$ and $B$ play a game with a ball and $n$ boxes placed onto the vertices of a regular $n$-gon where $n$ is a positive integer. Initially, the ball is hidden in a box by player $A$. At each step, $B$ chooses a box, then player $A$ says the distance of the ball to the selected box to player $B$ and moves the ball to an adjacent box. If $B$ finds the ball, then $B$ wins. Find the least number of steps for which $B$ can guarantee to win.
1991 Tournament Of Towns, (288) 4
A circle is divided by the chord $AB$ into two segments and one of them is rotated about the point $A$ by a certain angle, the point $B$ being taken to $B'$. Prove that the line segments joining the midpoints of the two arcs (i.e. the arc $AB$ which had not been rotated and the rotated arc $AB'$) with the midpoint of $BB'$ are perpendicular.
(F. Nazyrov, 11th form student, Obninsk)
2007 Sharygin Geometry Olympiad, 6
Given are two concentric circles $\Omega$ and $\omega$. Each of the circles $b_1$ and $b_2$ is externally tangent to $\omega$ and internally tangent to $\Omega$, and $\omega$ each of the circles $c_1$ and $c_2$ is internally tangent to both $\Omega$ and $\omega$. Mark each point where one of the circles $b_1, b_2$ intersects one of the circles $c_1$ and $c_2$. Prove that there exist two circles distinct from $b_1, b_2, c_1, c_2$ which contain all $8$ marked points. (Some of these new circles may appear to be lines.)
IV Soros Olympiad 1997 - 98 (Russia), 9.11
Given two circles intersecting at points $A$ and $B$. A certain circle touches the first at point $A$, intersects the second at point $M$ and intersects the straight line $AB$ at point $P$ ($M$ and $P$ are different from $B$). Prove that the straight line $MP$ passes through a fixed point of the plane (for any change in the third circle).
2022 IFYM, Sozopol, 1
Let $ABC$ be a triangle for which the shortest side is $AC$. Its inscribed circle with center $I$ touches sides $AB$ and $BC$ in points $D$ and $E$ respectively. Point $M$ is the midpoint of $AC$. Points $F$ and $G$ lie on sides $BC$ and $AB$ respectively so that $FC=CA=AG$. The line through $I$ perpendicular to $MI$ intersects the line segments $AF$ and $CG$ in $P$ and $Q$ respectively. Prove that $AB=BC\Leftrightarrow PD=QE$.
2010 AIME Problems, 13
Rectangle $ ABCD$ and a semicircle with diameter $ AB$ are coplanar and have nonoverlapping interiors. Let $ \mathcal{R}$ denote the region enclosed by the semicircle and the rectangle. Line $ \ell$ meets the semicircle, segment $ AB$, and segment $ CD$ at distinct points $ N$, $ U$, and $ T$, respectively. Line $ \ell$ divides region $ \mathcal{R}$ into two regions with areas in the ratio $ 1: 2$. Suppose that $ AU \equal{} 84$, $ AN \equal{} 126$, and $ UB \equal{} 168$. Then $ DA$ can be represented as $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.
2010 Iran MO (2nd Round), 3
Circles $W_1,W_2$ meet at $D$and $P$. $A$ and $B$ are on $W_1,W_2$ respectively, such that $AB$ is tangent to $W_1$ and $W_2$. Suppose $D$ is closer than $P$ to the line $AB$. $AD$ meet circle $W_2$ for second time at $C$. Let $M$ be the midpoint of $BC$. Prove that $\angle{DPM}=\angle{BDC}$.
1998 Putnam, 1
A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?
1995 AIME Problems, 1
Square $S_{1}$ is $1\times 1.$ For $i\ge 1,$ the lengths of the sides of square $S_{i+1}$ are half the lengths of the sides of square $S_{i},$ two adjacent sides of square $S_{i}$ are perpendicular bisectors of two adjacent sides of square $S_{i+1},$ and the other two sides of square $S_{i+1},$ are the perpendicular bisectors of two adjacent sides of square $S_{i+2}.$ The total area enclosed by at least one of $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m-n.$
[asy]
size(250);
path p=rotate(45)*polygon(4);
int i;
for(i=0; i<5; i=i+1) {
draw(shift(2-(1/2)^(i-1),0)*scale((1/2)^i)*p);
}
label("$S_1$", (0,-0.75));
label("$S_2$", (1,-0.75));
label("$S_3$", (3/2,-0.75));
label("$\cdots$", (7/4, -3/4));
label("$\cdots$", (2.25, 0));[/asy]
2013 Sharygin Geometry Olympiad, 19
a) The incircle of a triangle $ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to the bisector $AL$ in points $Q$ and $P$ respectively. Prove that the lines $PC_0, QB_0$ and $BC$ concur.
b) Let $AL$ be the bisector of a triangle $ABC$. Points $O_1$ and $O_2$ are the circumcenters of triangles $ABL$ and $ACL$ respectively. Points $B_1$ and $C_1$ are the projections of $C$ and $B$ to the bisectors of angles $B$ and $C$ respectively. Prove that the lines $O_1C_1, O_2B_1,$ and $BC$ concur.
c) Prove that the two points obtained in pp. a) and b) coincide.
1995 AMC 8, 9
Three congruent circles with centers $P$, $Q$, and $R$ are tangent to the sides of rectangle $ABCD$ as shown. The circle centered at $Q$ has diameter $4$ and passes through points $P$ and $R$. The area of the rectangle is
[asy]
pair A,B,C,D,P,Q,R;
A = (0,4); B = (8,4); C = (8,0); D = (0,0);
P = (2,2); Q = (4,2); R = (6,2);
dot(A); dot(B); dot(C); dot(D); dot(P); dot(Q); dot(R);
draw(A--B--C--D--cycle);
draw(circle(P,2));
draw(circle(Q,2));
draw(circle(R,2));
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
label("$P$",P,W);
label("$Q$",Q,W);
label("$R$",R,W);
[/asy]
$\text{(A)}\ 16 \qquad \text{(B)}\ 24 \qquad \text{(C)}\ 32 \qquad \text{(D)}\ 64 \qquad \text{(E)}\ 128$