This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017-IMOC, G5

We have $\vartriangle ABC$ with $I$ as its incenter. Let $D$ be the intersection of $AI$ and $BC$ and define $E, F$ in a similar way. Furthermore, let $Y = CI \cap DE, Z = BI \cap DF$. Prove that if $\angle BAC = 120^o$, then $E, F, Y,Z$ are concyclic. [img]https://1.bp.blogspot.com/-5IFojUbPE3o/XnSKTlTISqI/AAAAAAAALd0/0OwKMl02KJgqPs-SDOlujdcWXM0cWJiegCK4BGAYYCw/s1600/imoc2017%2Bg5.png[/img]

2022 Moldova Team Selection Test, 4

Tags: geometry
In the acute triangle $ABC$ the point $M$ is on the side $BC$. The inscribed circle of triangle $ABM$ touches the sides $BM$, $MA$ and $AB$ in points $D$, $E$ and $F$, and the inscribed circle of triangle $ACM$ touches the sides $CM$, $MA$ and $AC$ in points $X$, $Y$ and $Z$. The lines $FD$ and $ZX$ intersect in point $H$. Prove that lines $AH$, $XY$ and $DE$ are concurrent.

2015 Math Hour Olympiad, 5-7

[u]Round 1[/u] [b]p1.[/b] A party is attended by ten people (men and women). Among them is Pat, who always lies to people of the opposite gender and tells the truth to people of the same gender. Pat tells five of the guests: “There are more men than women at the party.” Pat tells four of the guests: “There are more women than men at the party.” Is Pat a man or a woman? [b]p2.[/b] Once upon a time in a land far, far away there lived $100$ knights, $99$ princesses, and $101$ dragons. Over time, knights beheaded dragons, dragons ate princesses, and princesses poisoned knights. But they always obeyed an ancient law that prohibits killing any creature who has killed an odd number of others. Eventually only one creature remained alive. Could it have been a knight? A dragon? A princess? [b]p3.[/b] The numbers $1 \circ 2 \circ 3 \circ 4 \circ 5 \circ 6 \circ 7 \circ 8 \circ 9 \circ 10$ are written in a line. Alex and Vicky play a game, taking turns inserting either an addition or a multiplication symbol between adjacent numbers. The last player to place a symbol wins if the resulting expression is odd and loses if it is even. Alex moves first. Who wins? (Remember that multiplication is performed before addition.) [b]p4.[/b] A chess tournament had $8$ participants. Each participant played each other participant once. The winner of a game got $1$ point, the loser $0$ points, and in the case of a draw each got $1/2$ a point. Each participant scored a different number of points, and the person who got $2$nd prize scored the same number of points as the $5$th, $6$th, $7$th and $8$th place participants combined. Can you determine the result of the game between the $3$rd place player and the $5$th place player? [b]p5.[/b] One hundred gnomes sit in a circle. Each gnome gets a card with a number written on one side and a different number written on the other side. Prove that it is possible for all the gnomes to lay down their cards so that no two neighbors have the same numbers facing up. [u]Round 2[/u] [b]p6.[/b] A casino machine accepts tokens of $32$ different colors, one at a time. For each color, the player can choose between two fixed rewards. Each reward is up to $\$10$ cash, plus maybe another token. For example, a blue token always gives the player a choice of getting either $\$5$ plus a red token or $\$3$ plus a yellow token; a black token can always be exchanged either for $\$10$ (but no token) or for a brown token (but no cash). A player may keep playing as long as he has a token. Rob and Bob each have one white token. Rob watches Bob play and win $\$500$. Prove that Rob can win at least $\$1000$. [img]https://cdn.artofproblemsolving.com/attachments/6/6/e55614bae92233c9b2e7d66f5f425a18e6475a.png[/img] [b]p7.[/b] Each of the $100$ residents of Pleasantville has at least $30$ friends in town. A resident votes in the mayoral election only if one of her friends is a candidate. Prove that it is possible to nominate two candidates for mayor so that at least half of the residents will vote. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 IFYM, Sozopol, 4

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ intersect in point $M$. The angle bisector of $\angle ACD$ intersects the ray $\overrightarrow{BA}$ in point $K$. If $MA.MC+MA.CD=MB.MD$, prove that $\angle BKC=\angle CDB$.

2016 Switzerland Team Selection Test, Problem 10

Let $ABC$ be a non-rectangle triangle with $M$ the middle of $BC$. Let $D$ be a point on the line $AB$ such that $CA=CD$ and let $E$ be a point on the line $BC$ such that $EB=ED$. The parallel to $ED$ passing through $A$ intersects the line $MD$ at the point $I$ and the line $AM$ intersects the line $ED$ at the point $J$. Show that the points $C, I$ and $J$ are aligned.

2014 Canada National Olympiad, 4

The quadrilateral $ABCD$ is inscribed in a circle. The point $P$ lies in the interior of $ABCD$, and $\angle P AB = \angle P BC = \angle P CD = \angle P DA$. The lines $AD$ and $BC$ meet at $Q$, and the lines $AB$ and $CD$ meet at $R$. Prove that the lines $P Q$ and $P R$ form the same angle as the diagonals of $ABCD$.

2017 Yasinsky Geometry Olympiad, 5

Find the area of the section of a unit cube $ABCDA_1B_1C_1D_1$, when a plane passes through the midpoints of the edges $AB, AD$ and $CC_1$.

STEMS 2023 Math Cat A, 3

Tags: ratio , geometry
Given a triangle $ABC$ with angles $\angle A = 60^{\circ}, \angle B = 75^{\circ}, \angle C = 45^{\circ}$, let $H$ be its orthocentre, and $O$ be its circumcenter. Let $F$ be the midpoint of side $AB$, and $Q$ be the foot of the perpendicular from $B$ onto $AC$. Denote by $X$ the intersection point of the lines $FH$ and $QO$. Suppose the ratio of the length of $FX$ and the circumradius of the triangle is given by $\dfrac{a + b \sqrt{c}}{d}$, then find the value of $1000a + 100b + 10c + d$.

2018 Thailand TST, 2

A positive integer $n < 2017$ is given. Exactly $n$ vertices of a regular 2017-gon are colored red, and the remaining vertices are colored blue. Prove that the number of isosceles triangles whose vertices are monochromatic does not depend on the chosen coloring (but does depend on $n$.)

1966 IMO Shortlist, 22

Let $P$ and $P^{\prime }$ be two parallelograms with equal area, and let their sidelengths be $a,$ $b$ and $a^{\prime },$ $b^{\prime }.$ Assume that $a^{\prime }\leq a\leq b\leq b^{\prime },$ and moreover, it is possible to place the segment $b^{\prime }$ such that it completely lies in the interior of the parallelogram $P.$ Show that the parallelogram $P$ can be partitioned into four polygons such that these four polygons can be composed again to form the parallelogram $% P^{\prime }.$

1990 APMO, 3

Consider all the triangles $ABC$ which have a fixed base $AB$ and whose altitude from $C$ is a constant $h$. For which of these triangles is the product of its altitudes a maximum?

2016 Sharygin Geometry Olympiad, P3

Tags: geometry
Let $AH_1$, $BH_2$ be two altitudes of an acute-angled triangle $ABC$ , $D$ be the projection of $H_1$ to $AC$, $E$ be the projection of $D$ to $AB$, $F$ be the common point of $ED$ and $AH_1$. Prove that $H_2F \parallel BC$. [i](Proposed by E.Diomidov)[/i]

1941 Moscow Mathematical Olympiad, 089

Tags: geometry , skew , locus
Given two skew perpendicular lines in space, find the set of the midpoints of all segments of given length with the endpoints on these lines.

1995 All-Russian Olympiad Regional Round, 9.6

Circles $S_1$ and $S_2$ with centers $O_1$ and $O_2$ respectively intersect at $A$ and $B$. The circle passing through $O_1$, $O_2$, and $A$ intersects $S_1$, $S_2$ and line $AB$ again at $D$, $E$, and $C$, respectively. Show that $CD = CB = CE$.

1968 Polish MO Finals, 6

Consider a set of $n > 3$ points in the plane, no three of which are collinear, and a natural number $k < n$. Prove the following statements: (a) If $k \le \frac{n}{2}$, then each point can be connected with at least k other points by segments so that no three segments form a triangle. (b) If $k \ge \frac{n}{2}$, and each point is connected with at least k other points by segments, then some three segments form a triangle.

2003 Gheorghe Vranceanu, 3

Let $ z_1,z_2,z_3 $ be nonzero complex numbers and pairwise distinct, having the property that $\left( z_1+z_2\right)^3 =\left( z_2+z_3\right)^3 =\left( z_3+z_1\right)^3. $ Show that $ \left| z_1-z_2\right| =\left| z_2-z_3\right| =\left| z_3-z_1\right| . $

2018 Finnish National High School Mathematics Comp, 4

Define $f : \mathbb{Z}_+ \to \mathbb{Z}_+$ such that $f(1) = 1$ and $f(n) $ is the greatest prime divisor of $n$ for $n > 1$. Aino and Väinö play a game, where each player has a pile of stones. On each turn the player to turn with $m$ stones in his pile may remove at most $f(m)$ stones from the opponent's pile, but must remove at least one stone. (The own pile stays unchanged.) The first player to clear the opponent's pile wins the game. Prove that there exists a positive integer $n$ such that Aino loses, when both players play optimally, Aino starts, and initially both players have $n$ stones.

1972 Putnam, B5

Let $A,B,C$ and $D$ be non-coplanar points such that $\angle ABC=\angle ADC$ and $\angle BAD=\angle BCD$. Show that $AB=CD$ and $AD=BC$.

2000 Tournament Of Towns, 1

Triangle $ABC$ is inscribed in a circle. Chords $AM$ and $AN$ intersect side $BC$ at points $K$ and $L$ respectively. Prove that if a circle passes through all of the points $K, L, M$ and $N$, then $ABC$ is an isosceles triangle. (V Zhgun)

1997 Romania National Olympiad, 4

The quadrilateral $ABCD$ has two parallel sides. Let $M$ and $N$ be the midpoints of $[DC]$ and $[BC]$, and $P$ the common point of the lines $AM$ and $DN$. If $\frac{PM}{AP}=\frac{1}{4}$, prove that $ABCD$ is a parallelogram.

2008 Miklós Schweitzer, 6

Is it possible to draw circles on the plane so that every line intersects at least one of them but no more than $100$ of them?

2015 Czech and Slovak Olympiad III A, 3

Tags: geometry
In triangle $\triangle ABC$ with median from $B$ not perpendicular to $AB$ nor $BC$, we call $X$ and $Y$ points on $AB$ and $BC$, which lie on the axis of the median from $B$. Find all such triangles, for which $A,C,X,Y$ lie on one circumrefference.

Geometry Mathley 2011-12, 10.2

Let $ABC$ be an acute triangle, not isoceles triangle and $(O), (I)$ be its circumcircle and incircle respectively. Let $A_1$ be the the intersection of the radical axis of $(O), (I)$ and the line $BC$. Let $A_2$ be the point of tangency (not on $BC$) of the tangent from $A_1$ to $(I)$. Points $B_1,B_2,C_1,C_2$ are defined in the same manner. Prove that (a) the lines $AA_2,BB_2,CC_2$ are concurrent. (b) the radical centers circles through triangles $BCA_2, CAB_2$ and $ABC_2$ are all on the line $OI$. Lê Phúc Lữ

2001 Austrian-Polish Competition, 8

The prism with the regular octagonal base and with all edges of the length equal to $1$ is given. The points $M_{1},M_{2},\cdots,M_{10}$ are the midpoints of all the faces of the prism. For the point $P$ from the inside of the prism denote by $P_{i}$ the intersection point (not equal to $M_{i}$) of the line $M_{i}P$ with the surface of the prism. Assume that the point $P$ is so chosen that all associated with $P$ points $P_{i}$ do not belong to any edge of the prism and on each face lies exactly one point $P_{i}$. Prove that \[\sum_{i=1}^{10}\frac{M_{i}P}{M_{i}P_{i}}=5\]

1961 Kurschak Competition, 3

Two circles centers $O$ and $O'$ are disjoint. $PP'$ is an outer tangent (with $P$ on the circle center O, and P' on the circle center $O'$). Similarly, $QQ'$ is an inner tangent (with $Q$ on the circle center $O$, and $Q'$ on the circle center $O'$). Show that the lines $PQ$ and $P'Q'$ meet on the line $OO'$. [img]https://cdn.artofproblemsolving.com/attachments/b/d/bad305631571323a61b097f149a1bb6855cdc5.png[/img]