This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Kharkiv City MO Seniors - geometry, 2017.11.5

The quadrilateral $ABCD$ is inscribed in the circle $\omega$. Lines $AD$ and $BC$ intersect at point $E$. Points $M$ and $N$ are selected on segments $AD$ and $BC$, respectively, so that $AM: MD = BN: NC$. The circumscribed circle of the triangle $EMN$ intersects the circle $\omega$ at points $X$ and $Y$. Prove that the lines $AB, CD$ and $XY$ intersect at the same point or are parallel.

2009 Sharygin Geometry Olympiad, 3

The bisectors of trapezoid's angles form a quadrilateral with perpendicular diagonals. Prove that this trapezoid is isosceles.

2011 AMC 10, 3

At a store, when a length is reported as $x$ inches that means the length is at least $x-0.5$ inches and at most $x+0.5$ inches. Suppose the dimensions of a rectangular tile are reported as $2$ inches by $3$ inches. In square inches, what is the minimum area for the rectangle? $ \textbf{(A)}\ 3.75 \qquad \textbf{(B)}\ 4.5 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8.75 $

2015 Sharygin Geometry Olympiad, P5

Tags: circles , geometry , angle
Let a triangle $ABC$ be given. Two circles passing through $A$ touch $BC$ at points $B$ and $C$ respectively. Let $D$ be the second common point of these circles ($A$ is closer to $BC$ than $D$). It is known that $BC = 2BD$. Prove that $\angle DAB = 2\angle ADB.$

Novosibirsk Oral Geo Oly IX, 2021.3

In triangle $ABC$, side $AB$ is $1$. It is known that one of the angle bisectors of triangle $ABC$ is perpendicular to one of its medians, and some other angle bisector is perpendicular to the other median. What can be the perimeter of triangle $ABC$?

Kyiv City MO Juniors 2003+ geometry, 2004.7.3

Given a right triangle $ABC$ ($\angle A <45^o$,$ \angle C = 90^o$), on the sides $AC$ and $AB$ which are selected points $D,E$ respectively, such that $BD = AD$ and $CB = CE$. Let the segments $BD$ and $CE$ intersect at the point $O$. Prove that $\angle DOE = 90^o$.

Ukrainian From Tasks to Tasks - geometry, 2013.9

The perpendicular bisectors of the sides $AB$ and $CD$ of the rhombus $ABCD$ are drawn. It turned out that they divided the diagonal $AC$ into three equal parts. Find the altitude of the rhombus if $AB = 1$.

2021 Indonesia TST, G

Do there exist a rectangle that can be partitioned into a regular hexagon with side length $1$, and several right triangles with side lengths $1, \sqrt3 , 2$?

2011 Purple Comet Problems, 30

Four congruent spheres are stacked so that each is tangent to the other three. A larger sphere, $R$, contains the four congruent spheres so that all four are internally tangent to $R$. A smaller sphere, $S$, sits in the space between the four congruent spheres so that all four are externally tangent to $S$. The ratio of the surface area of $R$ to the surface area of $S$ can be written $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.

2014 Danube Mathematical Competition, 1

Two circles $\gamma_1$ and $\gamma_2$ cross one another at two points; let $A$ be one of these points. The tangent to $\gamma_1$ at $A$ meets again $\gamma_2$ at $B$, the tangent to $\gamma_2$ at $A$ meets again $\gamma_1$ at $C$, and the line $BC$ meets again $\gamma_1$ and $\gamma_2$ at $D_1$ and $D_2$, respectively. Let $E_1$ and $E_2$ be interior points of the segments $AD_1$ and $AD_2$, respectively, such that $AE_1 = AE_2$. The lines $BE_1$ and $AC$ meet at $M$, the lines $CE_2$ and $AB$ meet at $N$, and the lines $MN$ and $BC$ meet at $P$. Show that the line $PA$ is tangent to the circle $ABC$.

Ukrainian TYM Qualifying - geometry, 2020.10

In triangle $ABC$, point $I$ is the center, point $I_a$ is the center of the excircle tangent to the side $BC$. From the vertex $A$ inside the angle $BAC$ draw rays $AX$ and $AY$. The ray $AX$ intersects the lines $BI$, $CI$, $BI_a$, $CI_a$ at points $X_1$, $...$, $X_4$, respectively, and the ray $AY$ intersects the same lines at points $Y_1$, $...$, $Y_4$ respectively. It turned out that the points $X_1,X_2,Y_1,Y_2$ lie on the same circle. Prove the equality $$\frac{X_1X_2}{X_3X_4}= \frac{Y_1Y_2}{Y_3Y_4}.$$

Mid-Michigan MO, Grades 7-9, 2019

[b]p1.[/b] Prove that the equation $x^6 - 143x^5 - 917x^4 + 51x^3 + 77x^2 + 291x + 1575 = 0$ has no integer solutions. [b]p2.[/b] There are $81$ wheels in a storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that it can be detected with certainty after four measurements on a balance scale. [b]p3.[/b] Rob and Ann multiplied the numbers from $1$ to $100$ and calculated the sum of digits of this product. For this sum, Rob calculated the sum of its digits as well. Then Ann kept repeating this operation until he got a one-digit number. What was this number? [b]p4.[/b] Rui and Jui take turns placing bishops on the squares of the $ 8\times 8$ chessboard in such a way that bishops cannot attack one another. (In this game, the color of the rooks is irrelevant.) The player who cannot place a rook loses the game. Rui takes the first turn. Who has a winning strategy, and what is it? [b]p5.[/b] The following figure can be cut along sides of small squares into several (more than one) identical shapes. What is the smallest number of such identical shapes you can get? [img]https://cdn.artofproblemsolving.com/attachments/8/e/9cd09a04209774dab34bc7f989b79573453f35.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Adygea Teachers' Geometry Olympiad, 2

An arbitrary point $P$ is chosen on the lateral side $AB$ of the trapezoid $ABCD$. Straight lines passing through it parallel to the diagonals of the trapezoid intersect the bases at points $Q$ and $R$. Prove that the sides $QR$ of all possible triangles $PQR$ pass through a fixed point.

2000 Mongolian Mathematical Olympiad, Problem 2

Let $n\ge2$. For any two $n$-vectors $\vec x=(x_1,\ldots,x_n)$ and $\vec y=(y_1,\ldots,y_n)$, we define $$f\left(\vec x,\vec y\right)=x_1\overline{y_1}-\sum_{i=2}^nx_i\overline{y_i}.$$Prove that if $f\left(\vec x,\vec x\right)\ge0$, and $f\left(\vec y,\vec y\right)\ge0$, then $\left|f\left(\vec x,\vec y\right)\right|^2\ge f\left(\vec x,\vec x\right)f\left(\vec y,\vec y\right)$.

1940 Eotvos Mathematical Competition, 3

(a) Prove that for any triangle $H_1$, there exists a triangle $H_2$ whose side lengths are equal to the lengths of the medians of $H_1$. (b) If $H_3$ is the triangle whose side lengths are equal to the lengths of the medians of $H_2$, prove that $H_1$ and $H_3$ are similar.

1968 Polish MO Finals, 1

What is the largest number of regions into which a plane can be divided by drawing $n$ pairs of parallel lines?

2012 India PRMO, 10

Tags: geometry
$ABCD$ is a square and $AB = 1$. Equilateral triangles $AYB$ and $CXD$ are drawn such that $X$ and $Y$ are inside the square. What is the length of $XY$?

Brazil L2 Finals (OBM) - geometry, 2022.4

Tags: geometry
Let $ABC$ a triangle with $AB=BC$ and incircle $\omega$. Let $M$ the mindpoint of $BC$; $P, Q$ points in the sides $AB, AC$ such that $PQ\parallel BC$, $PQ$ is tangent to $\omega$ and $\angle CQM=\angle PQM$. Find the perimeter of triangle $ABC$ knowing that $AQ=1$.

1991 Tournament Of Towns, (294) 4

(a) Is it possible to place five wooden cubes in space so that each of them has a part of its face touching each of the others? (b) Answer the same question, but with $6$ cubes.

2010 ITAMO, 4

In a trapezium $ABCD$, the sides $AB$ and $CD$ are parallel and the angles $\angle ABC$ and $\angle BAD$ are acute. Show that it is possible to divide the triangle $ABC$ into 4 disjoint triangle $X_1. . . , X_4$ and the triangle $ABD$ into 4 disjoint triangles $Y_1,. . . , Y_4$ such that the triangles $X_i$ and $Y_i$ are congruent for all $i$.

2010 Laurențiu Panaitopol, Tulcea, 4

On the sides (excluding its endpoints) $ AB,BC,CD,DA $ of a parallelogram consider the points $ M,N,P,Q, $ respectively, such that $ \overrightarrow{AP} +\overrightarrow{AN} +\overrightarrow{CQ} +\overrightarrow{CM} = 0. $ Show that $ QN, PM,AC $ are concurrent. [i]Adrian Ivan[/i]

2020 Dürer Math Competition (First Round), P4

Let $ABC$ be an acute triangle with side $AB$ of length $1$. Say we reflect the points $A$ and $B$ across the midpoints of $BC$ and $AC$, respectively to obtain the points $A’$ and $B’$ . Assume that the orthocenters of triangles $ ABC$, $A’BC$ and $B’AC$ form an equilateral triangle. a) Prove that triangle $ABC$ is isosceles. b) What is the length of the altitude of $ABC$ through $C$?

JBMO Geometry Collection, 2011

Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that \[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\] If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$

2000 Bosnia and Herzegovina Team Selection Test, 5

Let $T_m$ be a number of non-congruent triangles which perimeter is $m$ and all its sides are positive integers. Prove that: $a)$ $T_{1999} > T_{2000}$ $b)$ $T_{4n+1}=T_{4n-2}+n$, $(n \in \mathbb{N})$

EMCC Guts Rounds, 2021

[u]Round 1[/u] [b]p1.[/b] What is the remainder when $2021$ is divided by $102$? [b]p2.[/b] Brian has $2$ left shoes and $2$ right shoes. Given that he randomly picks $2$ of the $4$ shoes, the probability he will get a left shoe and a right shoe is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Compute $p + q$. [b]p3.[/b] In how many ways can $59$ be written as a sum of two perfect squares? (The order of the two perfect squares does not matter.) [u]Round 2 [/u] [b]p4.[/b] Two positive integers have a sum of $60$. Their least common multiple is $273$. What is the positive diffeerence between the two numbers? [b]p5.[/b] How many ways are there to distribute $13$ identical apples among $4$ identical boxes so that no two boxes receive the same number of apples? A box may receive zero apples. [b]p6.[/b] In square $ABCD$ with side length $5$, $P$ lies on segment $AB$ so that $AP = 3$ and $Q$ lies on segment $AD$ so that $AQ = 4$. Given that the area of triangle $CPQ$ is $x$, compute $2x$. [u]Round 3 [/u] [b]p7.[/b] Find the number of ordered triples $(a, b, c)$ of nonnegative integers such that $2a+3b+5c = 15$. [b]p8.[/b] What is the greatest integer $n \le 15$ such that $n + 1$ and $n^2 + 3$ are both prime? [b]p9.[/b] For positive integers $a, b$, and $c$, suppose that $gcd \,\,(a, b) = 21$, $gcd \,\,(a, c) = 10$, and $gcd \,\,(b,c) = 11$. Find $\frac{abc}{lcm \,\,(a,b,c)}$ . (Note: $gcd$ is the greatest common divisor function and $lcm$ is the least common multiple function.) [u]Round 4[/u] [b]p10.[/b] The vertices of a square in the coordinate plane are at $(0, 0)$, $(0, 6)$, $(6, 0)$, and $(6, 6)$. Line $\ell$ intersects the square at exactly two lattice points (that is, points with integer coordinates). How many such lines $\ell$ are there that divide the square into two regions, one of them having an area of $12$? [b]p11.[/b] Let $f(n)$ be defined as follows for positive integers $n$: $f(1) = 0$, $f(n) = 1$ if $n$ is prime, and $f(n) = f(n - 1) + 1$ otherwise. What is the maximum value of $f(n)$ for $n \le 120$? [b]p12.[/b] The graph of the equation $y = x^3 + ax^2 + bx + c$ passes through the points $(2,4)$, $(3, 9)$, and $(4, 16)$. What is $b$? PS. You should use hide for answers. Rounds 5- 8 have been posted [url=https://artofproblemsolving.com/community/c3h2949415p26408227]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].