Found problems: 25757
2009 AMC 8, 7
The triangular plot of ACD lies between Aspen Road, Brown Road and a railroad. Main Street runs east and west, and the railroad runs north and south. The numbers in the diagram indicate distances in miles. The width of the railroad track can be ignored. How many square miles are in the plot of land ACD?
[asy]
size(250);
defaultpen(linewidth(0.55));
pair A=(-6,0), B=origin, C=(0,6), D=(0,12);
pair ac=C+2.828*dir(45),
ca=A+2.828*dir(225),
ad=D+2.828*dir(A--D),
da=A+2.828*dir(D--A),
ab=(2.828,0),
ba=(-6-2.828, 0);
fill(A--C--D--cycle, gray);
draw(ba--ab);
draw(ac--ca);
draw(ad--da);
draw((0,-1)--(0,15));
draw((1/3, -1)--(1/3, 15));
int i;
for(i=1; i<15; i=i+1) {
draw((-1/10, i)--(13/30, i));
}
label("$A$", A, SE);
label("$B$", B, SE);
label("$C$", C, SE);
label("$D$", D, SE);
label("$3$", (1/3,3), E);
label("$3$", (1/3,9), E);
label("$3$", (-3,0), S);
label("Main", (-3,0), N);
label(rotate(45)*"Aspen", A--C, SE);
label(rotate(63.43494882)*"Brown", A--D, NW);
[/asy]
$\textbf{(A)}\ 2\qquad
\textbf{(B)}\ 3 \qquad
\textbf{(C)}\ 4.5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 9$
2024 Iranian Geometry Olympiad, 4
Point $P$ is inside the acute triangle $\bigtriangleup ABC$ such that $\angle BPC=90^{\circ}$ and $\angle BAP=\angle PAC$. Let $D$ be the projection of $P$ onto the side $BC$. Let $M$ and $N$ be the incenters of the triangles $\bigtriangleup ABD$ and $\bigtriangleup ADC$ respectively. Prove that the quadrilateral $BMNC$ is cyclic.
[i]Proposed by Hussein Khayou - Syria[/i]
2008 Gheorghe Vranceanu, 3
If the circumradius of any three consecutive vertices of a convex polygon is at most $ 1, $ show that the discs of radius $ 1 $ centered at each vertex cover the polygon and its interior.
2007 Germany Team Selection Test, 2
Let $ ABCDE$ be a convex pentagon such that
\[ \angle BAC \equal{} \angle CAD \equal{} \angle DAE\qquad \text{and}\qquad \angle ABC \equal{} \angle ACD \equal{} \angle ADE.
\]The diagonals $BD$ and $CE$ meet at $P$. Prove that the line $AP$ bisects the side $CD$.
[i]Proposed by Zuming Feng, USA[/i]
1997 Turkey Team Selection Test, 1
In a triangle $ABC$ with a right angle at $A$, $H$ is the foot of the altitude from $A$. Prove that the sum of the inradii of the triangles $ABC$, $ABH$, and $AHC$ is equal to $AH$.
2009 Today's Calculation Of Integral, 458
Let $ S(t)$ be the area of the traingle $ OAB$ with $ O(0,\ 0,\ 0),\ A(2,\ 2,\ 1),\ B(t,\ 1,\ 1 \plus{} t)$.
Evaluate $ \int_1^ e S(t)^2\ln t\ dt$.
1982 National High School Mathematics League, 1
For a convex polygon with $n$ edges $F$, if all its diagonals have the equal length, then
$\text{(A)}F\in \{\text{quadrilaterals}\}$
$\text{(B)}F\in \{\text{pentagons}\}$
$\text{(C)}F\in \{\text{pentagons}\} \cup\{\text{quadrilaterals}\}$
$\text{(D)}F\in \{\text{convex polygons that have all edges' length equal}\} \cup\{\text{convex polygons that have all inner angles equal}\}$
2021 Iran Team Selection Test, 6
Point $D$ is chosen on the Euler line of triangle $ABC$ and it is inside of the triangle. Points $E,F$ are were the line $BD,CD$ intersect with $AC,AB$ respectively. Point $X$ is on the line $AD$ such that $\angle EXF =180 - \angle A$, also $A,X$ are on the same side of $EF$. If $P$ is the second intersection of circumcircles of $CXF,BXE$ then prove the lines $XP,EF$ meet on the altitude of $A$
Proposed by [i]Alireza Danaie[/i]
2022 ABMC, 2022 Oct
[b]p1.[/b] How many two-digit primes have a units digit of $3$?
[b]p2.[/b] How many ways can you arrange the letters $A$, $R$, and $T$ such that it makes a three letter combination? Each letter is used once.
[b]p3.[/b] Hanna and Kevin are running a $100$ meter race. If Hanna takes $20$ seconds to finish the race and Kevin runs $15$ meters per second faster than Hanna, by how many seconds does Kevin finish before Hanna?
[b]p4.[/b] It takes an ant $3$ minutes to travel a $120^o$ arc of a circle with radius $2$. How long (in minutes) would it take the ant to travel the entirety of a circle with radius $2022$?
[b]p5.[/b] Let $\vartriangle ABC$ be a triangle with angle bisector $AD$. Given $AB = 4$, $AD = 2\sqrt2$, $AC = 4$, find the area of $\vartriangle ABC$.
[b]p6.[/b] What is the coefficient of $x^5y^2$ in the expansion of $(x + 2y + 4)^8$?
[b]p7.[/b] Find the least positive integer $x$ such that $\sqrt{20475x}$ is an integer.
[b]p8.[/b] What is the value of $k^2$ if $\frac{x^5 + 3x^4 + 10x^2 + 8x + k}{x^3 + 2x + 4}$ has a remainder of $2$?
[b]p9.[/b] Let $ABCD$ be a square with side length $4$. Let $M$, $N$, and $P$ be the midpoints of $\overline{AB}$, $\overline{BC}$ and $\overline{CD}$, respectively. The area of the intersection between $\vartriangle DMN$ and $\vartriangle ANP$ can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p10.[/b] Let $x$ be all the powers of two from $2^1$ to $2^{2023}$ concatenated, or attached, end to end ($x = 2481632...$). Let y be the product of all the powers of two from $2^1$ to $2^{2023}$ ($y = 2 \cdot 4 \cdot 8 \cdot 16 \cdot 32... $ ). Let 2a be the largest power of two that divides $x$ and $2^b$ be the largest power of two that divides $y$. Compute $\frac{b}{a}$ .
[b]p11.[/b] Larry is making a s’more. He has to have one graham cracker on the top and one on the bottom, with eight layers in between. Each layer can made out of chocolate, more graham crackers, or marshmallows. If graham crackers cannot be placed next to each other, how many ways can he make this s’more?
[b]p12.[/b] Let $ABC$ be a triangle with $AB = 3$, $BC = 4$, $AC = 5$. Circle $O$ is centered at $B$ and has radius $\frac{8\sqrt{3}}{5}$ . The area inside the triangle but not inside the circle can be written as $\frac{a-b\sqrt{c}-d\pi}{e}$ , where $gcd(a, b, d, e) =1$ and $c$ is squarefree. Find $a + b + c + d + e$.
[b]p13.[/b] Let $F(x)$ be a quadratic polynomial. Given that $F(x^2 - x) = F (2F(x) - 1)$ for all $x$, the sum of all possible values of $F(2022)$ can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p14.[/b] Find the sum of all positive integers $n$ such that $6\phi (n) = \phi (5n)+8$, where $\phi$ is Euler’s totient function.
Note: Euler’s totient $(\phi)$ is a function where $\phi (n)$ is the number of positive integers less than and relatively prime to $n$. For example, $\phi (4) = 2$ since only $1$, $3$ are the numbers less than and relatively prime to $4$.
[b]p15.[/b] Three numbers $x$, $y$, and $z$ are chosen at random from the interval $[0, 1]$. The probability that there exists an obtuse triangle with side lengths $x$, $y$, and $z$ can be written in the form $\frac{a\pi-b}{c}$ , where $a$, $b$, $c$ are positive integers with $gcd(a, b, c) = 1$. Find $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2001 Abels Math Contest (Norwegian MO), 3b
The diagonals $AC$ and $BD$ in the convex quadrilateral $ABCD$ intersect in $S$. Let $F_1$ and $F_2$ be the areas of $\vartriangle ABS$ and $\vartriangle CSD$. and let $F$ be the area of the quadrilateral $ABCD$. Show that $\sqrt{ F_1 }+\sqrt{ F_2}\le \sqrt{ F}$
2024 UMD Math Competition Part II, #3
A right triangle $A_1 A_2 A_3$ with side lengths $6,\,8,$ and $10$ on a plane $\mathcal P$ is given. Three spheres $S_1,S_2$ and $S_3$ with centers $O_1, O_2,$ and $O_3,$ respectively, are located on the same side of the plane $\mathcal P$ in such a way that $S_i$ is tangent to $\mathcal P$ at $A_i$ for $i = 1, 2, 3.$ Assume $S_1, S_2, S_3$ are pairwise externally tangent. Find the area of triangle $O_1O_2O_3.$
2000 Macedonia National Olympiad, 3
In a triangle with sides $a,b,c,t_a,t_b,t_c$ are the corresponding medians and $D$ the diameter of the circumcircle. Prove that
\[\frac{a^2+b^2}{t_c}+\frac{b^2+c^2}{t_a}+\frac{c^2+a^2}{t_b}\le 6D\]
2001 National Olympiad First Round, 33
Let $ABC$ be a triangle such that $|AC|=1$ and $|AB|=\sqrt 2$. Let $M$ be a point such that $|MA|=|AB|$, $m(\widehat{MAB}) = 90^\circ$, and $C$ and $M$ are on the opposite sides of $AB$. Let $N$ be a point such that $|NA|=|AX|$, $m(\widehat{NAC}) = 90^\circ$, and $B$ and $N$ are on the opposite sides of $AC$. If the line passing throung $A$ and the circumcenter of triangle $MAN$ meets $[BC]$ at $F$, what is $\dfrac {|BF|}{|FC|}$?
$
\textbf{(A)}\ 2\sqrt 2
\qquad\textbf{(B)}\ 2\sqrt 3
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ 3\sqrt 2
$
2009 China Northern MO, 2
In an acute triangle $ABC$ , $AB>AC$ , $ \cos B+ \cos C=1$ , $E,F$ are on the extend line of $AB,AC$ such that $\angle ABF = \angle ACE = 90$ .
(1) Prove :$BE+CF=EF$ ;
(2) Assume the bisector of $\angle EBC$ meet $EF$ at $P$ , prove that $CP$ is the bisector of $\angle BCF$.
[img]https://cdn.artofproblemsolving.com/attachments/a/2/c554c2bc0b4e044c45f88138568f5234d544a8.png[/img]
2021 Iran Team Selection Test, 6
Point $D$ is chosen on the Euler line of triangle $ABC$ and it is inside of the triangle. Points $E,F$ are were the line $BD,CD$ intersect with $AC,AB$ respectively. Point $X$ is on the line $AD$ such that $\angle EXF =180 - \angle A$, also $A,X$ are on the same side of $EF$. If $P$ is the second intersection of circumcircles of $CXF,BXE$ then prove the lines $XP,EF$ meet on the altitude of $A$
Proposed by [i]Alireza Danaie[/i]
2021 BMT, Tie 3
Right triangle $\vartriangle ABC$ with its right angle at $B$ has angle bisector $\overline{AD}$ with $D$ on $\overline{BC}$, as well as altitude $\overline{BE}$ with $E$ on $\overline{AC}$. If $\overline{DE} \perp \overline{BC}$ and $AB = 1$, compute $AC$.
2021 Korea National Olympiad, P6
Let $ABC$ be an obtuse triangle with $\angle A > \angle B > \angle C$, and let $M$ be a midpoint of the side $BC$. Let $D$ be a point on the arc $AB$ of the circumcircle of triangle $ABC$ not containing $C$. Suppose that the circle tangent to $BD$ at $D$ and passing through $A$ meets the circumcircle of triangle $ABM$ again at $E$ and $\overline{BD}=\overline{BE}$. $\omega$, the circumcircle of triangle $ADE$, meets $EM$ again at $F$.
Prove that lines $BD$ and $AE$ meet on the line tangent to $\omega$ at $F$.
2011 Rioplatense Mathematical Olympiad, Level 3, 2
Let $ABC$ an acute triangle and $H$ its orthocenter. Let $E$ and $F$ be the intersection of lines $BH$ and $CH$ with $AC$ and $AB$ respectively, and let $D$ be the intersection of lines $EF$ and $BC$. Let $\Gamma_1$ be the circumcircle of $AEF$, and $\Gamma_2$ the circumcircle of $BHC$. The line $AD$ intersects $\Gamma_1$ at point $I \neq A$. Let $J$ be the feet of the internal bisector of $\angle{BHC}$ and $M$ the midpoint of the arc $\stackrel{\frown}{BC}$ from $\Gamma_2$ that contains the point $H$. The line $MJ$ intersects $\Gamma_2$ at point $N \neq M$. Show that the triangles $EIF$ and $CNB$ are similar.
2018 Hanoi Open Mathematics Competitions, 2
What is the largest area of a regular hexagon that can be drawn inside the equilateral triangle of side $3$?
A. $3\sqrt7$ B. $\frac{3 \sqrt3}{2}$ C. $2\sqrt5$ D. $\frac{3\sqrt3}{8}$ E. $3\sqrt5$
1999 India National Olympiad, 4
Let $\Gamma$ and $\Gamma'$ be two concentric circles. Let $ABC$ and $A'B'C'$ be any two equilateral triangles inscribed in $\Gamma$ and $\Gamma'$ respectively. If $P$ and $P'$ are any two points on $\Gamma$ and $\Gamma'$ respectively, show that \[ P'A^2 + P'B^2 + P'C^2 = A'P^2 + B'P^2 + C'P^2. \]
1995 French Mathematical Olympiad, Problem 3
Consider three circles in the plane $\Gamma_1,\Gamma_2,\Gamma_3$ of radii $R$ passing through a point $O$, and denote by $\mathfrak D$ the set of points of the plane which belong to at least two of these circles. Find the position of $\Gamma_1,\Gamma_2,\Gamma_3$ for which the area of $\mathfrak D$ is the minimum possible. Justify your answer.
2012 China Team Selection Test, 1
In an acute-angled $ABC$, $\angle A>60^{\circ}$, $H$ is its orthocenter. $M,N$ are two points on $AB,AC$ respectively, such that $\angle HMB=\angle HNC=60^{\circ}$. Let $O$ be the circumcenter of triangle $HMN$. $D$ is a point on the same side with $A$ of $BC$ such that $\triangle DBC$ is an equilateral triangle. Prove that $H,O,D$ are collinear.
2016 Saudi Arabia Pre-TST, 2.4
Let $ABC$ be a non isosceles triangle with circumcircle $(O)$ and incircle $(I)$. Denote $(O_1)$ as the circle that external tangent to $(O)$ at $A'$ and also tangent to the lines $AB,AC$ at $A_b,A_c$ respectively. Define the circles $(O_2), (O_3)$ and the points $B', C', B_c , B_a, C_a, C_b$ similarly.
1. Denote J as the radical center of $(O_1), (O_2), (O_3) $and suppose that $JA'$ intersects $(O_1)$ at the second point $X, JB'$ intersects $(O_2)$ at the second point Y , JC' intersects $(O_3)$ at the second point $Z$. Prove that the circle $(X Y Z)$ is tangent to $(O_1), (O_2), (O_3)$.
2. Prove that $AA', BB', CC'$ are concurrent at the point $M$ and $3$ points $I,M,O$ are collinear.
2011 Croatia Team Selection Test, 3
Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.
2024 Rioplatense Mathematical Olympiad, 6
Let $ABC$ be a triangle with $\angle BAC = 90^\circ$ and $AB > AC$. Let $D$ be the foot of the altitude from $A$ to $BC$, $M$ be the midpoint of $BC$ and $A'$ be the reflection of $A$ over $D$. Let the mediatrix of $DM$ intersect lines $AB$ and $A'C$ at $P$ and $Q$, respectively. Let $K$ be the intersection of lines $A'C$ and $AB$. Prove that $PQ$ is tangent to the circumcircle of triangle $QDK$.