This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2021 CCA Math Bonanza, I12

Let $ABC$ be a triangle, let the $A$-altitude meet $BC$ at $D$, let the $B$-altitude meet $AC$ at $E$, and let $T\neq A$ be the point on the circumcircle of $ABC$ such that $AT || BC$. Given that $D,E,T$ are collinear, if $BD=3$ and $AD=4$, then the area of $ABC$ can be written as $a+\sqrt{b}$, where $a$ and $b$ are positive integers. What is $a+b$? [i]2021 CCA Math Bonanza Individual Round #12[/i]

2014 South East Mathematical Olympiad, 5

Let $\triangle ABC $ and $\triangle A'B'C'$ are acute triangles.Prove that\[Max\{cotA'(cotB+cotC),cotB'(cotC+cotA),cotC'(cotA+cotB)\}\ge \frac{2}{3}.\]

2021 HMNT, 10

Tags: geometry
Let $n$ be the answer to this problem. Suppose square $ABCD$ has side-length $3$. Then, congruent non-overlapping squares $EHGF$ and $IHJK$ of side-length $\frac{n}{6}$ are drawn such that $A$,$C$, and $H$ are collinear, $E$ lies on $BC$ and $I$ lies on $CD$. Given that $AJG$ is an equilateral triangle, then the area of $AJG$ is $a + b\sqrt{c}$, where $a$, $b$, $c$ are positive integers and $c$ is not divisible by the square of any prime. Find $a + b + c$.

Geometry Mathley 2011-12, 5.3

Let $ABC$ be an acute triangle, not being isoceles. Let $\ell_a$ be the line passing through the points of tangency of the escribed circles in the angle $A$ with the lines $AB, AC$ produced. Let $d_a$ be the line through $A$ parallel to the line that joins the incenter $I$ of the triangle $ABC$ and the midpoint of $BC$. Lines $\ell_b, d_b, \ell_c, d_c$ are defined in the same manner. Three lines $\ell_a, \ell_b, \ell_c$ intersect each other and these intersections make a triangle called $MNP$. Prove that the lines $d_a, d_b$ and $d_c$ are concurrent and their point of concurrency lies on the Euler line of the triangle $MNP$. Lê Phúc Lữ

1978 Romania Team Selection Test, 2

Points $ A’,B,C’ $ are arbitrarily taken on edges $ SA,SB, $ respectively, $ SC $ of a tetrahedron $ SABC. $ Plane forrmed by $ ABC $ intersects the plane $ \rho , $ formed by $ A’B’C’, $ in a line $ d. $ Prove that, meanwhile the plane $ \rho $ rotates around $ d, $ the lines $ AA’,BB’ $ and $ CC’ $ are, and remain concurrent. Find de locus of the respective intersections.

Novosibirsk Oral Geo Oly VIII, 2023.3

Tags: geometry
Points $A, B, C, D$ and $E$ are located on the plane. It is known that $CA = 12$, $AB = 8$, $BC = 4$, $CD = 5$, $DB = 3$, $BE = 6$ and $ED = 3$. Find the length of $AE$.

2023 Chile National Olympiad, 4

Inside a square with side $60$, $121$ points are drawn. Prove them are three points that are vertices of a triangle of area not exceeding $30$.

2010 Mathcenter Contest, 4

In a circle, two non-intersecting chords $AB,CD$ are drawn.On the chord $AB$,a point $E$ (different from $A$,$B$) is taken Consider the arc $AB$ that does not contain the points $C,D$. With a compass and a straighthedge, find all possible point $F$ on that arc such that $\dfrac{PE}{EQ}=\dfrac{1}{2}$, where $P$ and $Q$ are the points in which the chord $AB$ meets the segment $FC$ and $FD$. [i](tatari/nightmare)[/i]

2009 National Olympiad First Round, 29

$ P$ is the intersection point of diagonals of cyclic $ ABCD$. The circumcenters of $ \triangle APB$ and $ \triangle CPD$ lie on circumcircle of $ ABCD$. If $ AC \plus{} BD \equal{} 18$, then area of $ ABCD$ is ? $\textbf{(A)}\ 36 \qquad\textbf{(B)}\ \frac {81}{2} \qquad\textbf{(C)}\ \frac {36\sqrt 3}{2} \qquad\textbf{(D)}\ \frac {81\sqrt 3}{4} \qquad\textbf{(E)}\ \text{None}$

Durer Math Competition CD 1st Round - geometry, 2011.C4

Tags: geometry , area
Given a grid rectangle of size $2010 \times 1340$. A grid point is called [i]fair [/i] if the $2$ axis-parallel lines passing through it from the upper left and lower right corners of the large rectangle cut out a rectangle of equal area (such a point is shown in the figure). How many fair grid points lie inside the rectangle? [img]https://cdn.artofproblemsolving.com/attachments/1/b/21d4fb47c94b774994ac1c3aae7690bb98c7ae.png[/img]

2004 Bulgaria Team Selection Test, 3

Tags: geometry , inradius
Find the maximum possible value of the inradius of a triangle whose vertices lie in the interior, or on the boundary, of a unit square.

Durer Math Competition CD 1st Round - geometry, 2018.C5

A convex $n$-gon is called [i]nice[/i] if its sides are not all the same length, and the sum of the distances of any interior point to the side lines is $1$. Find all integers $n \ge 4$ such that a nice $n$-gon exists .

1960 Polish MO Finals, 2

A plane is drawn through the height of a regular tetrahedron, which intersects the planes of the lateral faces along $ 3 $ lines that form angles $ \alpha $, $ \beta $, $ \gamma $ with the plane of the tetrahedron's base. Prove that $$ tg^2 \alpha + tg^2 \beta + tg^2 \gamma =12.$$

2009 Sharygin Geometry Olympiad, 23

Is it true that for each $ n$, the regular $ 2n$-gon is a projection of some polyhedron having not greater than $ n \plus{} 2$ faces?

2007 Thailand Mathematical Olympiad, 6

A triangle has perimeter $2s$, inradius $r$, and incenter $I$. If $s_a, s_b$ and $s_c$ are the distances from $I$ to the three vertices, then show that $$\frac34 +\frac{r}{s_a}+\frac{r}{s_b}+\frac{r}{s_c} \le \frac{s^2}{12r^2}$$

KoMaL A Problems 2023/2024, A. 877

A convex quadrilateral $ABCD$ is circumscribed about circle $\omega$. A tangent to $\omega$ parallel to $AC$ intersects $BD$ at a point $P$ outside of $\omega$. The second tangent from $P$ to $\omega$ touches $\omega$ at a point $T$. Prove that $\omega$ and circumcircle of $ATC$ are tangent. [i]Proposed by Nikolai Beluhov, Bulgaria[/i]

The Golden Digits 2024, P3

Tags: geometry
Let $ABC$ be an acute scalene triangle with orthocentre $H{}$ and circumcentre $O.{}$ Let $P{}$ be an arbitrary point on the segment $OH$ and $O_a$ be the circumcentre of $PBC.{}$ The line $PO_a$ intersects the line $HA$ at $X_a.{}$ Define $X_b$ and $X_c$ similarly. Let $Q{}$ be the isogonal conjugate of $P{}$ and $X{}$ be the circumcentre of $X_aX_bX_c.{}$ Prove that $PQ$ and $HX$ are parallel. [i]Proposed by David Anghel[/i]

2010 Contests, 2

Let $ABC$ be a triangle and $L$, $M$, $N$ be the midpoints of $BC$, $CA$ and $AB$, respectively. The tangent to the circumcircle of $ABC$ at $A$ intersects $LM$ and $LN$ at $P$ and $Q$, respectively. Show that $CP$ is parallel to $BQ$.

2012 IMAC Arhimede, 2

Circles $k_1,k_2$ intersect at $B,C$ such that $BC$ is diameter of $k_1$.Tangent of $k_1$ at $C$ touches $k_2$ for the second time at $A$.Line $AB$ intersects $k_1$ at $E$ different from $B$, and line $CE$ intersects $k_2$ at F different from $C$. An arbitrary line through $E$ intersects segment $AF$ at $H$ and $k_1$ for the second time at $G$.If $BG$ and $AC$ intersect at $D$, prove $CH//DF$ .

1972 IMO Longlists, 38

Congruent rectangles with sides $m(cm)$ and $n(cm)$ are given ($m, n$ positive integers). Characterize the rectangles that can be constructed from these rectangles (in the fashion of a jigsaw puzzle). (The number of rectangles is unbounded.)

2006 Sharygin Geometry Olympiad, 9.6

A convex quadrilateral $ABC$ is given. $A',B',C',D'$ are the orthocenters of triangles $BCD, CDA, DAB, ABC$ respectively. Prove that in the quadrilaterals $ABCP$ and $A'B'C'D'$, the corresponding diagonals share the intersection points in the same ratio.

May Olympiad L2 - geometry, 2010.2

Let $ABCD$ be a rectangle and the circle of center $D$ and radius $DA$, which cuts the extension of the side $AD$ at point $P$. Line $PC$ cuts the circle at point $Q$ and the extension of the side $AB$ at point $R$. Show that $QB = BR$.

2006 District Olympiad, 4

a) Prove that we can assign one of the numbers $1$ or $-1$ to the vertices of a cube such that the product of the numbers assigned to the vertices of any face is equal to $-1$. b) Prove that for a hexagonal prism such a mapping is not possible.

2013 ELMO Shortlist, 1

Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the [i]David Yang triangle[/i] of $ABC$ and let $XYZ$ be the [i]Scott Wu triangle[/i] of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral. [i]Proposed by Owen Goff[/i]

2025 Macedonian Mathematical Olympiad, Problem 1

Given is an acute triangle \( \triangle ABC \) with \( AB < AC \). Let \( M \) be the midpoint of side \( BC \), and let \( X \) and \( Y \) be points on segments \( BM \) and \( CM \), respectively, such that \( BX = CY \). Let \( \omega_1 \) be the circumcircle of \( \triangle ABX \), and \( \omega_2 \) the circumcircle of \( \triangle ACY \). The common tangent \( t \) to \( \omega_1 \) and \( \omega_2 \), which lies closer to point \( A \), touches \( \omega_1 \) and \( \omega_2 \) at points \( P \) and \( Q \), respectively. Let the line \( MP \) intersect \( \omega_1 \) again at \( U \), and the line \( MQ \) intersect \( \omega_2 \) again at \( V \). Prove that the circumcircle of triangle \( \triangle MUV \) is tangent to both \( \omega_1 \) and \( \omega_2 \).