Found problems: 25757
1957 Polish MO Finals, 6
A cube is given with base $ ABCD $, where $ AB = a $ cm. Calculate the distance of the line $ BC $ from the line passing through the point $ A $ and the center $ S $ of the face opposite the base.
2016 Indonesia TST, 3
Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$
1994 Tuymaada Olympiad, 8
Prove that in space there is a sphere containing exactly $1994$ points with integer coordinates.
1985 Spain Mathematical Olympiad, 6
Let $OX$ and $OY$ be non-collinear rays. Through a point $A$ on $OX$, draw two lines $r_1$ and $r_2$ that are antiparallel with respect to $\angle XOY$. Let $r_1$ cut $OY$ at $M$ and $r_2$ cut $OY$ at $N$. (Thus, $\angle OAM = \angle ONA$). The bisectors of $ \angle AMY$ and $\angle ANY$ meet at $P$. Determine the location of $P$.
1996 All-Russian Olympiad Regional Round, 11.3
The length of the longest side of a triangle is $1$. Prove that three circles of radius $\frac{1}{\sqrt3}$ with centers at the vertices cover the entire triangle.
2024 Mongolian Mathematical Olympiad, 2
Let $ABC$ be an acute-angled triangle and let $E$ and $F$ be the feet of the altitudes from $B$ and $C$ to the sides $AC$ and $AB$ respectively. Suppose $AD$ is the diameter of the circle $ABC$. Let $M$ be the midpoint of $BC$. Let $K$ be the imsimilicenter of the incircles of the triangles $BMF$ and $CME$. Prove that the points $K, M, D$ are collinear.
[i]Proposed by Bilegdembrel Bat-Amgalan.[/i]
2000 Turkey MO (2nd round), 1
A circle with center $O$ and a point $A$ in this circle are given. Let $P_{B}$ is the intersection point of $[AB]$ and the internal bisector of $\angle AOB$ where $B$ is a point on the circle such that $B$ doesn't lie on the line $OA$, Find the locus of $P_{B}$ as $B$ varies.
1999 IMO Shortlist, 7
The point $M$ is inside the convex quadrilateral $ABCD$, such that
\[ MA = MC, \hspace{0,2cm} \widehat{AMB} = \widehat{MAD} + \widehat{MCD} \quad \textnormal{and} \quad \widehat{CMD} = \widehat{MCB} + \widehat{MAB}. \]
Prove that $AB \cdot CM = BC \cdot MD$ and $BM \cdot AD = MA \cdot CD.$
1959 Putnam, B5
Find the equation of the smallest sphere which is tangent to both of the lines
$$\begin{pmatrix}
x\\y\\z \end{pmatrix} =\begin{pmatrix}
t+1\\
2t+4\\
-3t +5
\end{pmatrix},\;\;\;\begin{pmatrix}
x\\y\\z \end{pmatrix} =\begin{pmatrix}
4t-12\\
-t+8\\
t+17
\end{pmatrix}.$$
XMO (China) 2-15 - geometry, 11.1
Let $\triangle ABC$ be connected to the circle $\Gamma$. The angular bisector of $\angle BAC$ intersects $BC$ to $D$. Straight line $BP$ intersects $AC$ to $E$, and straight line $CP$ intersects $AB$ to $F$. Let the tangent of the circle $\Gamma$ at point $A$ intersect the line $EF$ at the point $Q$. Proof: $PQ\parallel BC$.
2017 Sharygin Geometry Olympiad, 5
A square $ABCD$ is given. Two circles are inscribed into angles $A$ and $B$, and the sum of their diameters is equal to the sidelength of the square. Prove that one of their common tangents passes through the midpoint of $AB$.
2001 Polish MO Finals, 2
Given a regular tetrahedron $ABCD$ with edge length $1$ and a point $P$ inside it.
What is the maximum value of $\left|PA\right|+\left|PB\right|+\left|PC\right|+\left|PD\right|$.
2006 All-Russian Olympiad, 6
Consider a tetrahedron $SABC$. The incircle of the triangle $ABC$ has the center $I$ and touches its sides $BC$, $CA$, $AB$ at the points $E$, $F$, $D$, respectively. Let $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ be the points on the segments $SA$, $SB$, $SC$ such that $AA^{\prime}=AD$, $BB^{\prime}=BE$, $CC^{\prime}=CF$, and let $S^{\prime}$ be the point diametrically opposite to the point $S$ on the circumsphere of the tetrahedron $SABC$. Assume that the line $SI$ is an altitude of the tetrahedron $SABC$. Show that $S^{\prime}A^{\prime}=S^{\prime}B^{\prime}=S^{\prime}C^{\prime}$.
VI Soros Olympiad 1999 - 2000 (Russia), 9.9
The center of a circle, the radius of which is $r$, lies on the bisector of the right angle $A$ at a distance $a$ from its sides ($a > r$). A tangent to the circle intersects the sides of the angle at points $B$ and $C$. Find the smallest possible value of the area of triangle $ABC$.
2007 Tournament Of Towns, 2
Let $K, L, M$ and $N$ be the midpoints of the sides $AB, BC, CD$ and $DA$ of a cyclic quadrilateral $ABCD$. Let $P$ be the point of intersection of $AC$ and $BD$. Prove that the circumradii of triangles $PKL, PLM, PMN$ and $PNK$ are equal to one another.
2022 Germany Team Selection Test, 2
Find all integers $n\geq 3$ for which every convex equilateral $n$-gon of side length $1$ contains an equilateral triangle of side length $1$. (Here, polygons contain their boundaries.)
2023 Iranian Geometry Olympiad, 1
We are given an acute triangle $ABC$. The angle bisector of $\angle BAC$ cuts $BC$ at $P$. Points $D$ and $E$ lie on segments $AB$ and $AC$, respectively, so that $BC \parallel DE$. Points $K$ and $L$ lie on segments $PD$ and $PE$, respectively, so that points $A$, $D$, $E$, $K$, $L$ are concyclic. Prove that points $B$, $C$, $K$, $L$ are also concyclic.
[i]Proposed by Patrik Bak, Slovakia [/i]
2010 Federal Competition For Advanced Students, P2, 5
Two decompositions of a square into three rectangles are called substantially different, if reordering the rectangles does not change one into the other.
How many substantially different decompositions of a $2010 \times 2010$ square in three rectangles with integer side lengths are there such that the area of one rectangle is equal to the arithmetic mean of the areas of the other rectangles?
MMATHS Mathathon Rounds, 2014
[u]Round 1[/u]
[b]p1.[/b] A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?
[b]p2.[/b] If the coefficient of $z^ky^k$ is $252$ in the expression $(z + y)^{2k}$, find $k$.
[b]p3.[/b] Let $f(x) = \frac{4x^4-2x^3-x^2-3x-2}{x^4-x^3+x^2-x-1}$ be a function defined on the real numbers where the denominator is not zero. The graph of $f$ has a horizontal asymptote. Compute the sum of the x-coordinates of the points where the graph of $f$ intersects this horizontal asymptote. If the graph of f does not intersect the asymptote, write $0$.
[u]Round 2 [/u]
[b]p4.[/b] How many $5$-digit numbers have strictly increasing digits? For example, $23789$ has strictly increasing digits, but $23889$ and $23869$ do not.
[b]p5.[/b] Let
$$y =\frac{1}{1 +\frac{1}{9 +\frac{1}{5 +\frac{1}{9 +\frac{1}{5 +...}}}}}$$ If $y$ can be represented as $\frac{a\sqrt{b} + c}{d}$ , where $b$ is not divisible by any squares, and the greatest common divisor of $a$ and $d$ is $1$, find the sum $a + b + c + d$.
[b]p6.[/b] “Counting” is defined as listing positive integers, each one greater than the previous, up to (and including) an integer $n$. In terms of $n$, write the number of ways to count to $n$.
[u]Round 3 [/u]
[b]p7.[/b] Suppose $p$, $q$, $2p^2 + q^2$, and $p^2 + q^2$ are all prime numbers. Find the sum of all possible values of $p$.
[b]p8.[/b] Let $r(d)$ be a function that reverses the digits of the $2$-digit integer $d$. What is the smallest $2$-digit positive integer $N$ such that for some $2$-digit positive integer $n$ and $2$-digit positive integer $r(n)$, $N$ is divisible by $n$ and $r(n)$, but not by $11$?
[b]p9.[/b] What is the period of the function $y = (\sin(3\theta) + 6)^2 - 10(sin(3\theta) + 7) + 13$?
[u]Round 4 [/u]
[b]p10.[/b] Three numbers $a, b, c$ are given by $a = 2^2 (\sum_{i=0}^2 2^i)$, $b = 2^4(\sum_{i=0}^4 2^i)$, and $c = 2^6(\sum_{i=0}^6 2^i)$ . $u, v, w$ are the sum of the divisors of a, b, c respectively, yet excluding the original number itself. What is the value of $a + b + c -u - v - w$?
[b]p11.[/b] Compute $\sqrt{6- \sqrt{11}} - \sqrt{6+ \sqrt{11}}$.
[b]p12.[/b] Let $a_0, a_1,..., a_n$ be such that $a_n\ne 0$ and $$(1 + x + x^3)^{341}(1 + 2x + x^2 + 2x^3 + 2x^4 + x^6)^{342} =\sum_{i=0}^n a_ix^i.$$ Find the number of odd numbers in the sequence $a_0, a_1,..., a_n$.
PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2781343p24424617]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
KoMaL A Problems 2022/2023, A. 855
In scalene triangle $ABC$ the shortest side is $BC$. Let points $M$ and $N$ be chosen on sides $AB$ and $AC$, respectively, such that $BM=CN=BC$. Let $I$ and $O$ denote the incenter and circumcentre of triangle $ABC$, and let $D$ and $E$ denote the incenter and circumcenter of triangle $AMN$. Prove that lines $IO$ and $DE$ intersect each other on the circumcircle of triangle $ABC$.
[i]Submitted by Luu Dong, Vietnam[/i]
1973 Yugoslav Team Selection Test, Problem 3
Several points are denoted on a white piece of paper. The distance between each two of the points is greater than $24$. A drop of ink was sprinkled over the paper covering an area smaller than $\pi$. Prove that there exists a vector $\overrightarrow v$ with $\overrightarrow v<1$, such that after translating all of the points by $v$ none of them is covered in ink.
2023 Durer Math Competition Finals, 14
Zeus’s lightning is made of a copper rod of length $60$ by bending it $4$ times in alternating directions so that the angle between two adjacent parts is always $60^o$. What is the minimum value of the square of the distance between the two endpoints of the lightning?
All five segments of the lightning lie in the same plane.
[img]https://cdn.artofproblemsolving.com/attachments/5/1/a18206df4fde561421022c0f2b4332f5ac44a2.png[/img]
1997 Croatia National Olympiad, Problem 3
The areas of the faces $ABD,ACD,BCD,BCA$ of a tetrahedron $ABCD$ are $S_1,S_2,Q_1,Q_2$, respectively. The angle between the faces $ABD$ and $ACD$ equals $\alpha$, and the angle between $BCD$ and $BCA$ is $\beta$. Prove that
$$S_1^2+S_2^2-2S_1S_2\cos\alpha=Q_1^2+Q_2^2-2Q_1Q_2\cos\beta.$$
2006 Germany Team Selection Test, 2
In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively.
Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ .
[i]Proposed by Hojoo Lee, Korea[/i]
2015 Baltic Way, 11
The diagonals of parallelogram $ABCD$ intersect at $E$ . The bisectors of $\angle DAE$ and $\angle EBC$ intersect at $F$. Assume $ECFD$ is a parellelogram . Determine the ratio $AB:AD$.