This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 Assara - South Russian Girl's MO, 7

In a $7\times 7\times 7$ cube, the unit cubes are colored white, black and gray colors so that for any two colors the number of cubes of these two colors are different. In this case, $N$ parallel rows of $7$ cubes were found, each of which there are more white cubes than gray and than black. Likewise, there were $N$ parallel rows of $7$ cubes, each of which contained gray there are more cubes than white and than black, and there are also N parallel rows of $7$ cubes, each of which contains more black cubes than white ones and than gray ones. What is the largest $N$ for which this is possible?

1991 Bulgaria National Olympiad, Problem 2

Let $K$ be a cube with edge $n$, where $n>2$ is an even integer. Cube $K$ is divided into $n^3$ unit cubes. We call any set of $n^2$ unit cubes lying on the same horizontal or vertical level a layer. We dispose of $\frac{n^3}4$ colors, in each of which we paint exactly $4$ unit cubes. Prove that we can always select $n$ unit cubes of distinct colors, no two of which lie on the same layer.

2014 Chile TST Ibero, 2

Tags: geometry
Let $\triangle ABC$ be a triangle and points $P, Q, R$ on the sides $AB, BC,$ and $CA$ respectively, such that: \[ \frac{AP}{AB} = \frac{BQ}{BC} = \frac{CR}{CA} = \frac{1}{n} \] for $n \in \mathbb{N}$. The segments $AQ$ and $CP$ intersect at $D$, the segments $BR$ and $AQ$ intersect at $E$, and the segments $BR$ and $CP$ intersect at $F$. Compute the ratio: \[ \frac{\text{Area}(\triangle ABC)}{\text{Area}(\triangle DEF)}. \]

2016 Bundeswettbewerb Mathematik, 3

Let $A,B,C$ and $D$ be points on a circle in this order. The chords $AC$ and $BD$ intersect in point $P$. The perpendicular to $AC$ through C and the perpendicular to $BD$ through $D$ intersect in point $Q$. Prove that the lines $AB$ and $PQ$ are perpendicular.

2024-IMOC, G3

Tags: geometry
Triangle $ABC$ has circumcircle $\Omega$ and incircle $\omega$, where $\omega$ is tangent to $BC, CA, AB$ at $D,E,F$, respectively. $T$ is an arbitrary point on $\omega$. $EF$ meets $BC$ at $K$, $AT$ meets $\Omega$ again at $P$, $PK$ meets $\Omega$ again at $S$. $X$ is a point on $\Omega$ such that $S, D, X$ are colinear. Let $Y$ be the intersection of $AX$ and $EF$, prove that $YT$ is tangent to $\omega$. [i]Proposed by chengbilly[/i]

2013 Tournament of Towns, 3

Assume that $C$ is a right angle of triangle $ABC$ and $N$ is a midpoint of the semicircle, constructed on $CB$ as on diameter externally. Prove that $AN$ divides the bisector of angle $C$ in half.

2023 Iran MO (3rd Round), 6

Tags: geometry
In the acute triangle $\triangle ABC$ , $H$ is the orthocenter. $S$ is a point on $(AHC)$ st $\angle ASB = 90$. $P$ is on $AC$ and not on the extention of $AC$ from $A$ , st $\angle APS=\angle BAS$.Prove that $CS$ , the circle $(BPC)$ and the circle with diameter $AC$ are concurrent.

2022 CCA Math Bonanza, T9

Tags: geometry
Equilateral octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is constructed such that $A_1A_3A_5A_7$ is a square of side length $\sqrt{2}$ and $A_2A_4A_6A_8$ is a square of side length 4/3. For each vertex $A_i$ of the octagon, let $B_i$ be the intersection of lines $A_{i+1}A_{i+2}$ and $A_{i-1}A_{i-2}$, where $A_{i-8} = A_i = A_{i+8}$. Compute $[B_1B_2B_3B_4B_5B_6B_7B_8]^2$. [i]2022 CCA Math Bonanza Team Round #9[/i]

2000 Harvard-MIT Mathematics Tournament, 10

Tags: geometry
Let $C_1$ and $C_2$ be two concentric reflective hollow metal spheres of radius $R$ and $R\sqrt3$ respectively. From a point $P$ on the surface of $C_2$, a ray of light is emitted inward at $30^o$ from the radial direction. The ray eventually returns to $P$. How many total reflections off of $C_1$ and $C_2$ does it take?

1955 Moscow Mathematical Olympiad, 300

Inside $\vartriangle ABC$, there is fixed a point $D$ such that $AC - DA > 1$ and $BC - BD > 1$. Prove that $EC - ED > 1$ for any point $E$ on segment $AB$.

PEN R Problems, 5

A triangle has lattice points as vertices and contains no other lattice points. Prove that its area is $\frac{1}{2}$.

2008 Harvard-MIT Mathematics Tournament, 1

A $ 3\times3\times3$ cube composed of $ 27$ unit cubes rests on a horizontal plane. Determine the number of ways of selecting two distinct unit cubes from a $ 3\times3\times1$ block (the order is irrelevant) with the property that the line joining the centers of the two cubes makes a $ 45^\circ$ angle with the horizontal plane.

MBMT Team Rounds, 2016

[hide=E stands for Euclid , L stands for Lobachevsky]they had two problem sets under those two names[/hide] [b]E1.[/b] How many positive divisors does $72$ have? [b]E2 / L2.[/b] Raymond wants to travel in a car with $3$ other (distinguishable) people. The car has $5$ seats: a driver’s seat, a passenger seat, and a row of $3$ seats behind them. If Raymond’s cello must be in a seat next to him, and he can’t drive, but every other person can, how many ways can everyone sit in the car? [b]E3 / L3.[/b] Peter wants to make fruit punch. He has orange juice ($100\%$ orange juice), tropical mix ($25\%$ orange juice, $75\%$ pineapple juice), and cherry juice ($100\%$ cherry juice). If he wants his final mix to have $50\%$ orange juice, $10\%$ cherry juice, and $40\%$ pineapple juice, in what ratios should he mix the $3$ juices? Please write your answer in the form (orange):(tropical):(cherry), where the three integers are relatively prime. [b]E4 / L4.[/b] Points $A, B, C$, and $D$ are chosen on a circle such that $m \angle ACD = 85^o$, $m\angle ADC = 40^o$,and $m\angle BCD = 60^o$. What is $m\angle CBD$? [b]E5.[/b] $a, b$, and $c$ are positive real numbers. If $abc = 6$ and $a + b = 2$, what is the minimum possible value of $a + b + c$? [b]E6 / L5.[/b] Circles $A$ and $B$ are drawn on a plane such that they intersect at two points. The centers of the two circles and the two intersection points lie on another circle, circle $C$. If the distance between the centers of circles $A$ and $B$ is $20$ and the radius of circle $A$ is $16$, what is the radius of circle $B$? [b]E7.[/b] Point $P$ is inside rectangle $ABCD$. If $AP = 5$, $BP = 6$, and $CP = 7$, what is the length of $DP$? [b]E8 / L6.[/b] For how many integers $n$ is $n^2 + 4$ divisible by $n + 2$? [b]E9. [/b] How many of the perfect squares between $1$ and $10000$, inclusive, can be written as the sum of two triangular numbers? We define the $n$th triangular number to be $1 + 2 + 3 + ... + n$, where $n$ is a positive integer. [b]E10 / L7.[/b] A small sphere of radius $1$ is sitting on the ground externally tangent to a larger sphere, also sitting on the ground. If the line connecting the spheres’ centers makes a $60^o$ angle with the ground, what is the radius of the larger sphere? [b]E11 / L8.[/b] A classroom has $12$ chairs in a row and $5$ distinguishable students. The teacher wants to position the students in the seats in such a way that there is at least one empty chair between any two students. In how many ways can the teacher do this? [b]E12 / L9.[/b] Let there be real numbers $a$ and $b$ such that $a/b^2 + b/a^2 = 72$ and $ab = 3$. Find the value of $a^2 + b^2$. [b]E13 / L10.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $gcd \, (x, y)+lcm \, (x, y) =x + y + 8$. [b]E14 / L11.[/b] Evaluate $\sum_{i=1}^{\infty}\frac{i}{4^i}=\frac{1}{4} +\frac{2}{16} +\frac{3}{64} +...$ [b]E15 / L12.[/b] Xavier and Olivia are playing tic-tac-toe. Xavier goes first. How many ways can the game play out such that Olivia wins on her third move? The order of the moves matters. [b]L1.[/b] What is the sum of the positive divisors of $100$? [b]L13.[/b] Let $ABCD$ be a convex quadrilateral with $AC = 20$. Furthermore, let $M, N, P$, and $Q$ be the midpoints of $DA, AB, BC$, and $CD$, respectively. Let $X$ be the intersection of the diagonals of quadrilateral $MNPQ$. Given that $NX = 12$ and $XP = 10$, compute the area of $ABCD$. [b]L14.[/b] Evaluate $(\sqrt3 + \sqrt5)^6$ to the nearest integer. [b]L15.[/b] In Hatland, each citizen wears either a green hat or a blue hat. Furthermore, each citizen belongs to exactly one neighborhood. On average, a green-hatted citizen has $65\%$ of his neighbors wearing green hats, and a blue-hatted citizen has $80\%$ of his neighbors wearing blue hats. Each neighborhood has a different number of total citizens. What is the ratio of green-hatted to blue-hatted citizens in Hatland? (A citizen is his own neighbor.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Turkey MO (2nd round), 3

Some of the $n + 1$ cities in a country (including the capital city) are connected by one-way or two-way airlines. No two cities are connected by both a one-way airline and a two-way airline, but there may be more than one two-way airline between two cities. If $d_A$ denotes the number of airlines from a city $A$, then $d_A \le n$ for any city $A$ other than the capital city and $d_A + d_B \le n$ for any two cities $A$ and $B$ other than the capital city which are not connected by a two-way airline. Every airline has a return, possibly consisting of several connected flights. Find the largest possible number of two-way airlines and all configurations of airlines for which this largest number is attained.

2020 Federal Competition For Advanced Students, P2, 5

Let $h$ be a semicircle with diameter $AB$. Let $P$ be an arbitrary point inside the diameter $AB$. The perpendicular through $P$ on $AB$ intersects $h$ at point $C$. The line $PC$ divides the semicircular area into two parts. A circle will be inscribed in each of them that touches $AB, PC$ and $h$. The points of contact of the two circles with $AB$ are denoted by $D$ and $E$, where $D$ lies between $A$ and $P$. Prove that the size of the angle $DCE$ does not depend on the choice of $P$. (Walther Janous)

Kyiv City MO Seniors 2003+ geometry, 2014.11.4.1.

Construct for the triangle $ABC$ a circle $S$ passing through the point $B$ and touching the line $CA$ at the point $A$, a circle $T$ passing through the point $C$ and touches the line $BA$ at the point $A$. The second intersection point of the circles $S$ and $T$ is denoted by $D$. The intersection point of the line $AD$ and the circumscribed circle $\Delta ABC$ is denoted by $E$. Prove that $D$ is the midpoint of the segment $AE$.

2023 Belarus - Iran Friendly Competition, 4

Tags: geometry , incircle
Let $\Gamma$ be the incircle of a non-isosceles triangle $ABC$, $I$ be it’s incenter. Let $A_1, B_1, C_1$ be the tangency points of $\Gamma$ with the sides $BC, AC, AB$ respectively. Let $A_2 = \Gamma \cap AA_1$, $M = C_1B_1 \cap AI$, $P$ and $Q$ be the other (different from $A_1$ and $A_2$) intersection points of $\Gamma$ and $A_1M$, $A_2M$ respectively. Prove that $A$, $P$ and $Q$ are colinear.

2019 Polish Junior MO First Round, 7

A cube $ABCDA'B'C'D'$ is given with an edge of length $2$ and vertices marked as in the figure. The point $K$ is center of the edge $AB$. The plane containing the points $B',D', K$ intersects the edge $AD$ at point $L$. Calculate the volume of the pyramid with apex $A$ and base the quadrilateral $D'B'KL$. [img]https://cdn.artofproblemsolving.com/attachments/7/9/721989193ffd830fd7ad43bdde7e177c942c76.png[/img]

2010 Irish Math Olympiad, 2

Tags: geometry
Let $ABC$ be a triangle and let $P$ denote the midpoint of the side $BC$. Suppose that there exist two points $M$ and $N$ interior to the side $AB$ and $AC$ respectively, such that $$|AD|=|DM|=2|DN|,$$ where $D$ is the intersection point of the lines $MN$ and $AP$. Show that $|AC|=|BC|$.

2003 Bulgaria Team Selection Test, 5

Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$. Prove that $\angle {APB}=\angle {APD}$

2015 AMC 12/AHSME, 2

Two of the three sides of a triangle are $20$ and $15$. Which of the following numbers is not a possible perimeter of the triangle? $\textbf{(A) }52\qquad\textbf{(B) }57\qquad\textbf{(C) }62\qquad\textbf{(D) }67\qquad\textbf{(E) }72$

2007 Belarusian National Olympiad, 2

Tags: geometry
Circles $S_1$ and $S_2$ with centers $O_1$ and $O_2$, respectively, pass through the centers of each other. Let $A$ be one of their intersection points. Two points $M_1$ and $M_2$ begin to move simultaneously starting from $A$. Point $M_1$ moves along $S_1$ and point $M_2$ moves along $S_2$. Both points move in clockwise direction and have the same linear velocity $v$. (a) Prove that all triangles $AM_1M_2$ are equilateral. (b) Determine the trajectory of the movement of the center of the triangle $AM_1M_2$ and find its linear velocity.

1966 IMO Shortlist, 27

Given a point $P$ lying on a line $g,$ and given a circle $K.$ Construct a circle passing through the point $P$ and touching the circle $K$ and the line $g.$

2021 Azerbaijan IMO TST, 2

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other. $\emph{Slovakia}$

2008 Saint Petersburg Mathematical Olympiad, 1

The graph $y=x^2+ax+b$ intersects any of the two axes at points $A$, $B$, and $C$. The incenter of triangle $ABC$ lies on the line $y=x$. Prove that $a+b+1=0$.