This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

IV Soros Olympiad 1997 - 98 (Russia), grade8

[b]p1.[/b] What is the maximum amount of a $12\%$ acid solution that can be obtained from $1$ liter of $5\%$, $10\%$ and $15\%$ solutions? [b]p2.[/b] Which number is greater: $199,719,971,997^2$ or $199,719,971,996 * 19,9719,971,998$ ? [b]p3.[/b] Is there a convex $1998$-gon whose angles are all integer degrees? [b]p4.[/b] Is there a ten-digit number divisible by $11$ that uses all the digits from$ 0$ to $9$? [b]p5.[/b] There are $20$ numbers written in a circle, each of which is equal to the sum of its two neighbors. Prove that the sum of all numbers is $0$. [b]p6.[/b] Is there a convex polygon that has neither an axis of symmetry nor a center of symmetry, but which transforms into itself when rotated around some point through some angle less than $180$ degrees? [b]p7.[/b] In a convex heptagon, draw as many diagonals as possible so that no three of them are sides of the same triangle, the vertices of which are at the vertices of the original heptagon. [b]p8.[/b] Give an example of a natural number that is divisible by $30$ and has exactly $105$ different natural factors, including $1$ and the number itself. [b]p9.[/b] In the writing of the antipodes, numbers are also written with the digits $0, ..., 9$, but each of the numbers has different meanings for them and for us. It turned out that the equalities are also true for the antipodes $5 * 8 + 7 + 1 = 48$ $2 * 2 * 6 = 24$ $5* 6 = 30$ a) How will the equality $2^3 = ...$ in the writing of the antipodes be continued? b) What does the number$ 9$ mean among the Antipodes? Clarifications: a) It asks to convert $2^3$ in antipodes language, and write with what number it is equal and find a valid equality in both numerical systems. b) What does the digit $9$ mean among the antipodes, i.e. with which digit is it equal in our number system? [b]p10.[/b] Is there a convex quadrilateral that can be cut along a straight line into two parts of the same size and shape, but neither the diagonal nor the straight line passing through the midpoints of opposite sides divides it into two equal parts? PS.1. There was typo in problem $9$, it asks for $2^3$ and not $23$. PS.2. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

1968 All Soviet Union Mathematical Olympiad, 103

Tags: decagon , geometry
Given a triangle $ABC$, point $D$ on $[AB], E$ on $[AC]$, $|AD| = |DE| = |AC| , |BD| = |AE| , DE$ is parallel to $BC$. Prove that the length $|BD|$ equals to the side of a regular decagon inscribed in a circle with the radius $R=|AC|$.

2017 Romania Team Selection Test, P1

Let $ABC$ be a triangle with $AB<AC$, let $G,H$ be its centroid and otrhocenter. Let $D$ be the otrhogonal projection of $A$ on the line $BC$, and let $M$ be the midpoint of the side $BC$. The circumcircle of $ABC$ crosses the ray $HM$ emanating from $M$ at $P$ and the ray $DG$ emanating from $D$ at $Q$, outside the segment $DG$. Show that the lines $DP$ and $MQ$ meet on the circumcircle of $ABC$.

2018 Poland - Second Round, 3

Bisector of side $BC$ intersects circumcircle of triangle $ABC$ in points $P$ and $Q$. Points $A$ and $P$ lie on the same side of line $BC$. Point $R$ is an orthogonal projection of point $P$ on line $AC$. Point $S$ is middle of line segment $AQ$. Show that points $A, B, R, S$ lie on one circle.

2021 Irish Math Olympiad, 2

An isosceles triangle $ABC$ is inscribed in a circle with $\angle ACB = 90^o$ and $EF$ is a chord of the circle such that neither E nor $F$ coincide with $C$. Lines $CE$ and $CF$ meet $AB$ at $D$ and $G$ respectively. Prove that $|CE|\cdot |DG| = |EF| \cdot |CG|$.

2011 Indonesia TST, 3

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2010 China Team Selection Test, 1

Given acute triangle $ABC$ with $AB>AC$, let $M$ be the midpoint of $BC$. $P$ is a point in triangle $AMC$ such that $\angle MAB=\angle PAC$. Let $O,O_1,O_2$ be the circumcenters of $\triangle ABC,\triangle ABP,\triangle ACP$ respectively. Prove that line $AO$ passes through the midpoint of $O_1 O_2$.

2008 Cuba MO, 8

Let $ABC$ an acute-angle triangle. Let $R$ be a rectangle with vertices in the edges of $ABC$. Let $O$ be the center of $R$. a) Find the locus of all the points $O$. b) Decide if there is a point that is the center of three of these rectangles.

2023 Taiwan TST Round 3, G

Tags: geometry
Let $H$ be the orthocenter of triangle $ABC$, and $AD$, $BE$, $CF$ be the three altitudes of triangle $ABC$. Let $G$ be the orthogonal projection of $D$ onto $EF$, and $DD'$ be the diameter of the circumcircle of triangle $DEF$. Line $AG$ and the circumcircle of triangle $ABC$ intersect again at point $X$. Let $Y$ be the intersection of $GD'$ and $BC$, while $Z$ be the intersection of $AD'$ and $GH$. Prove that $X$, $Y$, and $Z$ are collinear. [i]Proposed by Li4 and Untro368.[/i]

2011 BAMO, 4

Tags: geometry , circles , ratio
Three circles $k_1, k_2$, and $k_3$ intersect in point $O$. Let $A, B$, and $C$ be the second intersection points (other than $O$) of $k_2$ and $k_3, k_1$ and $k_3$, and $k_1$ and $k_2$, respectively. Assume that $O$ lies inside of the triangle $ABC$. Let lines $AO,BO$, and $CO$ intersect circles $k_1, k_2$, and $k_3$ for a second time at points $A', B'$, and $C'$, respectively. If $|XY|$ denotes the length of segment $XY$, prove that $\frac{|AO|}{|AA'|}+\frac{|BO|}{|BB'|}+\frac{|CO|}{|CC'|}= 1$

2015 Czech-Polish-Slovak Junior Match, 1

Tags: geometry , incenter
Let $I$ be the center of the circle of the inscribed triangle $ABC$ and $M$ be the center of its side $BC$. If $|AI| = |MI|$, prove that there are two of the sides of triangle $ABC$, of which one is twice of the other.

2013 Romania Team Selection Test, 2

Tags: geometry
Let $K$ be a convex quadrangle and let $l$ be a line through the point of intersection of the diagonals of $K$. Show that the length of the segment of intersection $l\cap K$ does not exceed the length of (at least) one of the diagonals of $K$.

2010 Indonesia TST, 3

Tags: geometry
Given a non-isosceles triangle $ABC$ with incircle $k$ with center $S$. $k$ touches the side $BC,CA,AB$ at $P,Q,R$ respectively. The line $QR$ and line $BC$ intersect at $M$. A circle which passes through $B$ and $C$ touches $k$ at $N$. The circumcircle of triangle $MNP$ intersects $AP$ at $L$. Prove that $S,L,M$ are collinear.

2014 Ukraine Team Selection Test, 8

The quadrilateral $ABCD$ is inscribed in the circle $\omega$ with the center $O$. Suppose that the angles $B$ and $C$ are obtuse and lines $AD$ and $BC$ are not parallel. Lines $AB$ and $CD$ intersect at point $E$. Let $P$ and $R$ be the feet of the perpendiculars from the point $E$ on the lines $BC$ and $AD$ respectively. $Q$ is the intersection point of $EP$ and $AD, S$ is the intersection point of $ER$ and $BC$. Let K be the midpoint of the segment $QS$ . Prove that the points $E, K$, and $O$ are collinear.

2018 Regional Olympiad of Mexico Southeast, 3

Let $ABC$ a triangle with circumcircle $\Gamma$ and $R$ a point inside $ABC$ such that $\angle ABR=\angle RBC$. Let $\Gamma_1$ and $\Gamma_2$ the circumcircles of triangles $ARB$ and $CRB$ respectly. The parallel to $AC$ that pass through $R$, intersect $\Gamma$ in $D$ and $E$, with $D$ on the same side of $BR$ that $A$ and $E$ on the same side of $BR$ that $C$. $AD$ intersect $\Gamma_1$ in $P$ and $CE$ intersect $\Gamma_2$ in $Q$. Prove that $APQC$ is cyclic if and only if $AB=BC$

VI Soros Olympiad 1999 - 2000 (Russia), 9.3

On the sides $BC$ and $AC$ of the isosceles triangle $ABC$ ($AB = BC$), points $E$ and $D$ are marked, respectively, so that $DE \parallel AB$. On the extendsion of side $CB$ beyond the point $B$, point $K$ was arbitrarily marked. Let $P$ be the intersection point of the lines $AB$ and $KD$. Let $Q$ be the intersection point of the lines $AK$ and $DE$. Prove that $CA$ is the bisector of angle $\angle PCQ$.

2023 Durer Math Competition Finals, 1

$ABC$ is an isosceles triangle. The base $BC$ is $1$ cm long, and legs $AB$ and $AC$ are $2$ cm long. Let the midpoint of $AB$ be $F$, and the midpoint of $AC$ be $G$. Additionally, $k$ is a circle, that is tangent to $AB$ and A$C$, and it’s points of tangency are $F$ and $G$ accordingly. Prove, that the intersection of $CF$ and $BG$ falls on the circle $k$.

2019 Oral Moscow Geometry Olympiad, 5

On sides $AB$ and $BC$ of a non-isosceles triangle $ABC$ are selected points $C_1$ and $A_1$ such that the quadrilateral $AC_1A_1C$ is cyclic. Lines $CC_1$ and $AA_1$ intersect at point $P$. Line $BP$ intersects the circumscribed circle of triangle $ABC$ at the point $Q$. Prove that the lines $QC_1$ and $CM$, where $M$ is the midpoint of $A_1C_1$, intersect at the circumscribed circles of triangle $ABC$.

2010 QEDMO 7th, 7

Let $ABC$ be a triangle. Let $x_1$ and $x_2$ be two congruent circles, which touch each other and the segment $BC$, and which both lie within triangle $ABC$, and for which it also holds that $x_1$ touches the segment $CA$, and that $x_2$ is the segment $AB$. Let $X$ be the contact point of these two circles $x_1$ and $x_2$. Let $y_1$ and $y_2$ two congruent circles that touch each other and the segment $CA$, and both within of triangle $ABC$, and for which it also holds that $y_1$ touches the segment $AB$, and that $y_2$ the segment $BC$. Let $Y$ be the contact point of these two circles $y_1$ and $y_2$. Let $z_1$ and $z_2$ be two congruent circles that touch each other and the segment $AB$, and both within triangle $ABC$, and for which it also holds that $z_1$ touches the segment $BC$, and that $z_2$ the segment $CA$. Let $Z$ be the contact point of these two circles $z_1$ and $z_2$. Prove that the straight lines $AX, BY$ and $CZ$ intersect at a point.

2015 Peru MO (ONEM), 1

If $C$ is a set of $n$ points in the plane that has the following property: For each point $P$ of $C$, there are four points of $C$, each one distinct from $P$ , which are the vertices of a square. Find the smallest possible value of $n$.

1992 AMC 8, 10

An isosceles right triangle with legs of length $8$ is partitioned into $16$ congruent triangles as shown. The shaded area is [asy] for (int a=0; a <= 3; ++a) { for (int b=0; b <= 3-a; ++b) { fill((a,b)--(a,b+1)--(a+1,b)--cycle,grey); } } for (int c=0; c <= 3; ++c) { draw((c,0)--(c,4-c),linewidth(1)); draw((0,c)--(4-c,c),linewidth(1)); draw((c+1,0)--(0,c+1),linewidth(1)); } label("$8$",(2,0),S); label("$8$",(0,2),W); [/asy] $\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 32 \qquad \text{(D)}\ 40 \qquad \text{(E)}\ 64$

2022 Purple Comet Problems, 20

Let $\mathcal{S}$ be a sphere with radius $2.$ There are $8$ congruent spheres whose centers are at the vertices of a cube, each has radius $x,$ each is externally tangent to $3$ of the other $7$ spheres with radius $x,$ and each is internally tangent to $\mathcal{S}.$ There is a sphere with radius $y$ that is the smallest sphere internally tangent to $\mathcal{S}$ and externally tangent to $4$ spheres with radius $x.$ There is a sphere with radius $z$ centered at the center of $\mathcal{S}$ that is externally tangent to all $8$ of the spheres with radius $x.$ Find $18x + 5y + 4z.$

1973 All Soviet Union Mathematical Olympiad, 182

Three similar acute-angled triangles $AC_1B, BA_1C$ and $CB_1A$ are constructed on the outer side of the acute-angled triangle $ABC$. (Equal triples of the angles are $AB_1C, ABC_1, A_1BC$ and $BA_1C, BAC_1, B_1AC$.) a) Prove that the circles circumscribed around the outer triangles intersect in one point. b) Prove that the straight lines $AA_1, BB_1$ and $CC_1$ intersect in the same point

2018 Kyiv Mathematical Festival, 2

Let $M$ be the intersection point of the medians $AD$ and $BE$ of a right triangle $ABC$ ($\angle C=90^\circ$),\linebreak $\omega_1$ and $\omega_2$ be the circumcircles of triangles $AEM$ and $CDM.$ It is known that the circles $\omega_1$ and $\omega_2$ are tangent. Find the ratio in which the circle $\omega_1$ divides $AB.$

2008 Germany Team Selection Test, 1

Tags: ratio , geometry
Let $ ABC$ be an acute triangle, and $ M_a$, $ M_b$, $ M_c$ be the midpoints of the sides $ a$, $ b$, $ c$. The perpendicular bisectors of $ a$, $ b$, $ c$ (passing through $ M_a$, $ M_b$, $ M_c$) intersect the boundary of the triangle again in points $ T_a$, $ T_b$, $ T_c$. Show that if the set of points $ \left\{A,B,C\right\}$ can be mapped to the set $ \left\{T_a, T_b, T_c\right\}$ via a similitude transformation, then two feet of the altitudes of triangle $ ABC$ divide the respective triangle sides in the same ratio. (Here, "ratio" means the length of the shorter (or equal) part divided by the length of the longer (or equal) part.) Does the converse statement hold?