This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2005 Thailand Mathematical Olympiad, 4

Tags: incenter , geometry
Triangle $\vartriangle ABC$ is inscribed in the circle with diameter $BC$. If $AB = 3$, $AC = 4$, and $O$ is the incenter of $\vartriangle ABC$, then find $BO \cdot OC$.

1981 Yugoslav Team Selection Test, Problem 2

Tags: geometry
Suppose that there is a point $S$ inside a quadrilateral $ABCD$ such that segments $SA,SB,SC,SD$ divide the quadrilateral into four triangles of equal areas. Prove that one of the diagonals of the quadrilateral bisects the other one.

2023 Greece Junior Math Olympiad, 2

In triangle $ABC$, points $M$, $N$ are the midpoints of sides $AB$, $AC$ respelctively. Let $D$ and $E$ be two points on line segment $BN$ such that $CD \parallel ME$ and $BD <BE$. Prove that $BD=2\cdot EN$.

2012 Purple Comet Problems, 27

You have some white one-by-one tiles and some black and white two-bye-one tiles as shown below. There are four different color patterns that can be generated when using these tiles to cover a three-by-one rectangoe by laying these tiles side by side (WWW, BWW, WBW, WWB). How many different color patterns can be generated when using these tiles to cover a ten-by-one rectangle? [asy] import graph; size(5cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((12,0)--(12,1)--(11,1)--(11,0)--cycle); fill((13.49,0)--(13.49,1)--(12.49,1)--(12.49,0)--cycle, black); draw((13.49,0)--(13.49,1)--(14.49,1)--(14.49,0)--cycle); draw((15,0)--(15,1)--(16,1)--(16,0)--cycle); fill((17,0)--(17,1)--(16,1)--(16,0)--cycle, black); [/asy]

2004 CentroAmerican, 1

In a $10\times 10$ square board, half of the squares are coloured white and half black. One side common to two squares on the board side is called a [i]border[/i] if the two squares have different colours. Determine the minimum and maximum possible number of borders that can be on the board.

Kyiv City MO 1984-93 - geometry, 1984.8.1

Inside the convex quadrilateral $ABCD$ lies the point $'M$. Reflect it symmetrically with respect to the midpoints of the sides of the quadrilateral and connect the obtained points so that they form a convex quadrilateral. Prove that the area of ​​this quadrilateral does not depend on the choice of the point $M$.

IV Soros Olympiad 1997 - 98 (Russia), grade7

[b]p1.[/b] In the correct identity $(x^2 - 1)(x + ...) = (x + 3)(x- 1)(x +...)$ two numbers were replaced with dots. What were these numbers? [b]p2.[/b] A merchant is carrying money from point A to point B. There are robbers on the roads who rob travelers: on one road the robbers take $10\%$ of the amount currently available, on the other - $20\%$, etc. . How should the merchant travel to bring as much of the money as possible to B? What part of the original amount will he bring to B? [img]https://cdn.artofproblemsolving.com/attachments/f/5/ab62ce8fce3d482bc52b89463c953f4271b45e.png[/img] [b]p3.[/b] Find the angle between the hour and minute hands at $7$ hours $38$ minutes. [b]p4.[/b] The lottery game is played as follows. A random number from $1$ to $1000$ is selected. If it is divisible by $2$, they pay a ruble, if it is divisible by $10$ - two rubles, by $12$ - four rubles, by $20$ - eight, if it is divisible by several of these numbers, then they pay the sum. How much can you win (at one time) in such a game? List all options. [b]p5.[/b]The sum of the digits of a positive integer $x$ is equal to $n$. Prove that between $x$ and $10x$ you can find an integer whose sum of digits is $ n + 5$. [b]p6.[/b] $9$ people took part in the campaign, which lasted $12$ days. There were $3$ people on duty every day. At the same time, the duty officers quarreled with each other and no two of them wanted to be on duty together ever again. Nevertheless, the participants of the campaign claim that for all $12$ days they were able to appoint three people on duty, taking into account this requirement. Could this be so? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

1989 Spain Mathematical Olympiad, 2

Points $A' ,B' ,C'$ on the respective sides $BC,CA,AB$ of triangle $ABC$ satisfy $\frac{AC' }{AB} = \frac{BA' }{BC} = \frac{CB' }{CA} = k$. The lines $AA' ,BB' ,CC' $ form a triangle $A_1B_1C_1$ (possibly degenerate). Given $k$ and the area $S$ of $\triangle ABC$, compute the area of $\triangle A_1B_1C_1$.

1980 IMO Shortlist, 21

Tags: symmetry , geometry
Let $AB$ be a diameter of a circle; let $t_1$ and $t_2$ be the tangents at $A$ and $B$, respectively; let $C$ be any point other than $A$ on $t_1$; and let $D_1D_2. E_1E_2$ be arcs on the circle determined by two lines through $C$. Prove that the lines $AD_1$ and $AD_2$ determine a segment on $t_2$ equal in length to that of the segment on $t_2$ determined by $AE_1$ and $AE_2.$

2011 AMC 12/AHSME, 11

Circles $A$, $B$, and $C$ each have radius $1$. Circles $A$ and $B$ share one point of tangency. Circle $C$ has a point of tangency with the midpoint of $\overline{AB}$. What is the area inside circle $C$ but outside circle $A$ and circle $B$? [asy] size(170); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=3; filldraw(arc((1,0),1,90,180)--arc((-1,0),1,0,90)--arc((0,1), 1, 180, 0)--cycle,gray); draw(circle((0,1),1)); draw(circle((1,0),1)); draw(circle((-1,0),1)); dot((-1,0)); dot((1,0)); dot((0,1)); label("$A$",(-1,0),SW); label("$B$",(1,0),SE); label("$C$",(0,1),N);[/asy] $ \textbf{(A)}\ 3-\frac{\pi}{2} \qquad \textbf{(B)}\ \frac{\pi}{2} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \frac{3\pi}{4} \qquad \textbf{(E)}\ 1+\frac{\pi}{2}$

1985 ITAMO, 4

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985. [asy] size(200); pair A=(0,1), B=(1,1), C=(1,0), D=origin; draw(A--B--C--D--A--(1,1/6)); draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1)); pair point=( 0.5 , 0.5 ); //label("$A$", A, dir(point--A)); //label("$B$", B, dir(point--B)); //label("$C$", C, dir(point--C)); //label("$D$", D, dir(point--D)); label("$1/n$", (11/12,1), N, fontsize(9));[/asy]

2016 CHMMC (Fall), 15

In a $5 \times 5$ grid of squares, how many nonintersecting pairs rectangles of rectangles are there? (Note sharing a vertex or edge still means the rectangles intersect.)

2011 India IMO Training Camp, 1

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

1985 Brazil National Olympiad, 2

Given $n$ points in the plane, show that we can always find three which give an angle $\le \pi / n$.

2001 Hong kong National Olympiad, 1

A triangle $ABC$ is given. A circle $\Gamma$, passing through $A$, is tangent to side $BC$ at point $P$ and intersects sides $AB$ and $AC$ at $M$ and $N$ respectively. Prove that the smaller arcs $MP$ and $NP$ of $\Gamma$ are equal iff $\Gamma$ is tangent to the circumcircle of $\Delta ABC$ at $A$.

2021 Indonesia TST, G

The circles $k_1$ and $k_2$ intersect at points $A$ and $B$, and $k_1$ passes through the center $O$ of the circle $k_2$. The line $p$ intersects $k_1$ at the points $K ,O$ and $k_2$ at the points $L ,M$ so that $L$ lies between $K$ and $O$. The point $P$ is the projection of $L$ on the line $AB$. Prove that $KP$ is parallel to the median of triangle $ABM$ drawn from the vertex $M$.

2014 JBMO TST - Macedonia, 2

Tags: geometry
Point $M$ is an arbitrary point in the plane and let points $G$ and $H$ be the intersection points of the tangents from point M and the circle $k$. Let $O$ be the center of the circle $k$ and let $K$ be the orthocenter of the triangle $MGH$. Prove that ${\angle}GMH={\angle}OGK$.

2021 Nigerian MO Round 3, Problem 2

Let $B, C, D, E$ be four pairwise distinct collinear points and let $A$ be a point not on ine $BC$. Now, let the circumcircle of $\triangle ABC$ meet $AD$ and $AE$ respectively again at $F$ and $G$. Show that $DEFG$ is cyclic if and only if $AB=AC$.

2007 Pan African, 3

Tags: geometry
An equilateral triangle of side length 2 is divided into four pieces by two perpendicular lines that intersect in the centroid of the triangle. What is the maximum possible area of a piece?

2010 Costa Rica - Final Round, 5

Let $C_1$ be a circle with center $O$ and let $B$ and $C$ be points in $C_1$ such that $BOC$ is an equilateral triangle. Let $D$ be the midpoint of the minor arc $BC$ of $C_1$. Let $C_2$ be the circle with center $C$ that passes through $B$ and $O$. Let $E$ be the second intersection of $C_1$ and $C_2$. The parallel to $DE$ through $B$ intersects $C_1$ for second time in $A$. Let $C_3$ be the circumcircle of triangle $AOC$. The second intersection of $C_2$ and $C_3$ is $F$. Show that $BE$ and $BF$ trisect the angle $\angle ABC$.

2003 AMC 12-AHSME, 14

In rectangle $ ABCD$, $ AB\equal{}5$ and $ BC\equal{}3$. Points $ F$ and $ G$ are on $ \overline{CD}$ so that $ DF\equal{}1$ and $ GC\equal{}2$. Lines $ AF$ and $ BG$ intersect at $ E$. Find the area of $ \triangle{AEB}$. [asy]unitsize(6mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair A=(0,0), B=(5,0), C=(5,3), D=(0,3), F=(1,3), G=(3,3); pair E=extension(A,F,B,G); draw(A--B--C--D--A--E--B); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,SE); label("$G$",G,SW); label("$B$",B,SE); label("1",midpoint(D--F),N); label("2",midpoint(G--C),N); label("3",midpoint(B--C),E); label("3",midpoint(A--D),W); label("5",midpoint(A--B),S);[/asy]$ \textbf{(A)}\ 10 \qquad \textbf{(B)}\ \frac{21}{2} \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ \frac{25}{2} \qquad \textbf{(E)}\ 15$

2002 APMO, 3

Tags: geometry
Let $ABC$ be an equilateral triangle. Let $P$ be a point on the side $AC$ and $Q$ be a point on the side $AB$ so that both triangles $ABP$ and $ACQ$ are acute. Let $R$ be the orthocentre of triangle $ABP$ and $S$ be the orthocentre of triangle $ACQ$. Let $T$ be the point common to the segments $BP$ and $CQ$. Find all possible values of $\angle CBP$ and $\angle BCQ$ such that the triangle $TRS$ is equilateral.

2011 Today's Calculation Of Integral, 675

In the coordinate plane with the origin $O$, consider points $P(t+2,\ 0),\ Q(0, -2t^2-2t+4)\ (t\geq 0).$ If the $y$-coordinate of $Q$ is nonnegative, then find the area of the region swept out by the line segment $PQ$. [i]2011 Ritsumeikan University entrance exam/Pharmacy[/i]

2011 Hanoi Open Mathematics Competitions, 1

Three lines are drawn in a plane. Which of the following could NOT be the total number of points of intersections? (A) $0$ (B) $1$ (C) $2$ (D) $3$ (E) They all could.

2001 India National Olympiad, 5

$ABC$ is a triangle. $M$ is the midpoint of $BC$. $\angle MAB = \angle C$, and $\angle MAC = 15^{\circ}$. Show that $\angle AMC$ is obtuse. If $O$ is the circumcenter of $ADC$, show that $AOD$ is equilateral.