This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 Indonesia TST, 2

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral. Assume that the points $Q, A, B, P$ are collinear in this order, in such a way that the line $AC$ is tangent to the circle $ADQ$, and the line $BD$ is tangent to the circle $BCP$. Let $M$ and $N$ be the midpoints of segments $BC$ and $AD$, respectively. Prove that the following three lines are concurrent: line $CD$, the tangent of circle $ANQ$ at point $A$, and the tangent to circle $BMP$ at point $B$.

1966 IMO Longlists, 56

In a tetrahedron, all three pairs of opposite (skew) edges are mutually perpendicular. Prove that the midpoints of the six edges of the tetrahedron lie on one sphere.

III Soros Olympiad 1996 - 97 (Russia), 9.2

It is known that the graph of a quadratic trinomial $y = x^2 + px + q$ touches the graph of a straight line $y = 2x + p$. Prove that all such quadratic trinomials have the same minimum value. Find this smallest value.

2013 AMC 10, 25

All diagonals are drawn in a regular octagon. At how many distinct points in the interior of the octagon (not on the boundary) do two or more diagonals intersect? $\textbf{(A)} \ 49 \qquad \textbf{(B)} \ 65 \qquad \textbf{(C)} \ 70 \qquad \textbf{(D)} \ 96 \qquad \textbf{(E)} \ 128$

2020 Balkan MO Shortlist, G5

Let $ABC$ be an isosceles triangle with $AB = AC$ and $\angle A = 45^o$. Its circumcircle $(c)$ has center $O, M$ is the midpoint of $BC$ and $D$ is the foot of the perpendicular from $C$ to $AB$. With center $C$ and radius $CD$ we draw a circle which internally intersects $AC$ at the point $F$ and the circle $(c)$ at the points $Z$ and $E$, such that $Z$ lies on the small arc $BC$ and $E$ on the small arc $AC$. Prove that the lines $ZE$, $CO$, $FM$ are concurrent. [i]Brazitikos Silouanos, Greece[/i]

Champions Tournament Seniors - geometry, 2011.2

Let $ABC$ be an isosceles triangle in which $AB = AC$. On its sides $BC$ and $AC$ respectively are marked points $P$ and $Q$ so that $PQ\parallel AB$. Let $F$ be the center of the circle circumscribed about the triangle $PQC$, and $E$ the midpoint of the segment $BQ$. Prove that $\angle AEF = 90^o $.

1986 IMO Longlists, 63

Let $AA',BB', CC'$ be the bisectors of the angles of a triangle $ABC \ (A' \in BC, B' \in CA, C' \in AB)$. Prove that each of the lines $A'B', B'C', C'A'$ intersects the incircle in two points.

1966 IMO, 3

Prove that the sum of the distances of the vertices of a regular tetrahedron from the center of its circumscribed sphere is less than the sum of the distances of these vertices from any other point in space.

1986 China Team Selection Test, 2

Given a tetrahedron $ABCD$, $E$, $F$, $G$, are on the respectively on the segments $AB$, $AC$ and $AD$. Prove that: i) area $EFG \leq$ max{area $ABC$,area $ABD$,area $ACD$,area $BCD$}. ii) The same as above replacing "area" for "perimeter".

2014 AMC 12/AHSME, 21

In the figure, $ABCD$ is a square of side length 1. The rectangles $JKHG$ and $EBCF$ are congruent. What is $BE$? [asy] unitsize(150); pair A,B,C,D,E,F,G,H,J,K; A=(1,0); B=(0,0); C=(0,1); D=(1,1); draw(A--B--C--D--A); E=(2-sqrt(3),0); F=(2-sqrt(3),1); draw(E--F); G=(1,sqrt(3)/2); H=(2.5-sqrt(3),1); K=(2-sqrt(3),1-sqrt(3)/2); J=(0.5,0); draw(G--H--K--J--G); label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,NW); label("$D$",D,NE); label("$E$",E,S); label("$F$",F,N); label("$G$",G,E); label("$H$",H,N); label("$K$",K,W); label("$J$",J,S); [/asy] $ \textbf{(A) }\dfrac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\dfrac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\dfrac{\sqrt{3}}{6}\qquad\textbf{(E) }1-\dfrac{\sqrt{2}}{2} $

2012 Danube Mathematical Competition, 2

Let $ABC$ be an acute triangle and let $A_1$, $B_1$, $C_1$ be points on the sides $BC, CA$ and $AB$, respectively. Show that the triangles $ABC$ and $A_1B_1C_1$ are similar ($\angle A = \angle A_1, \angle B = \angle B_1,\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle $ABC$ coincide.

2019 CHKMO, 3

Tags: geometry , incenter
The incircle of $\triangle{ABC}$, with incentre $I$, meets $BC, CA$, and $AB$ at $D,E$, and $F$, respectively. The line $EF$ cuts the lines $BI$, $CI, BC$, and $DI$ at $K,L,M$, and $Q$, respectively. The line through the midpoint of $CL$ and $M$ meets $CK$ at $P$. (a) Determine $\angle{BKC}$. (b) Show that the lines $PQ$ and $CL$ are parallel.

2010 Contests, 3

Let $ABC$ be a triangle and let $D\in (BC)$ be the foot of the $A$- altitude. The circle $w$ with the diameter $[AD]$ meet again the lines $AB$ , $AC$ in the points $K\in (AB)$ , $L\in (AC)$ respectively. Denote the meetpoint $M$ of the tangents to the circle $w$ in the points $K$ , $L$ . Prove that the ray $[AM$ is the $A$-median in $\triangle ABC$ ([b][u]Serbia[/u][/b]).

2010 Contests, 2

Each of two different lines parallel to the the axis $Ox$ have exactly two common points on the graph of the function $f(x)=x^3+ax^2+bx+c$. Let $\ell_1$ and $\ell_2$ be two lines parallel to $Ox$ axis which meet the graph of $f$ in points $K_1, K_2$ and $K_3, K_4$, respectively. Prove that the quadrilateral formed by $K_1, K_2, K_3$ and $ K_4$ is a rhombus if and only if its area is equal to $6$ units.

1968 Putnam, B3

Given that a $60^{\circ}$ angle cannot be trisected with ruler and compass, prove that a $\frac{120^{\circ}}{n}$ angle cannot be trisected with ruler and compass for $n=1,2,\ldots$

2010 Contests, 3

In an acute-angled triangle $ABC$, $CF$ is an altitude, with $F$ on $AB$, and $BM$ is a median, with $M$ on $CA$. Given that $BM=CF$ and $\angle MBC=\angle FCA$, prove that triangle $ABC$ is equilateral.

2012 Stars of Mathematics, 2

Let $\ell$ be a line in the plane, and a point $A \not \in \ell$. Also let $\alpha \in (0, \pi/2)$ be fixed. Determine the locus of the points $Q$ in the plane, for which there exists a point $P\in \ell$ such that $AQ=PQ$ and $\angle PAQ = \alpha$. ([i]Dan Schwarz[/i])

2012 ELMO Shortlist, 10

Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a cyclic octagon. Let $B_i$ by the intersection of $A_iA_{i+1}$ and $A_{i+3}A_{i+4}$. (Take $A_9 = A_1$, $A_{10} = A_2$, etc.) Prove that $B_1, B_2, \ldots , B_8$ lie on a conic. [i]David Yang.[/i]

2010 Baltic Way, 11

Tags: geometry
Let $ABCD$ be a square and let $S$ be the point of intersection of its diagonals $AC$ and $BD$. Two circles $k,k'$ go through $A,C$ and $B,D$; respectively. Furthermore, $k$ and $k'$ intersect in exactly two different points $P$ and $Q$. Prove that $S$ lies on $PQ$.

2011 Princeton University Math Competition, A1 / B2

Tags: geometry
Two logs of length 10 are laying on the ground touching each other. Their radii are 3 and 1, and the smaller log is fastened to the ground. The bigger log rolls over the smaller log without slipping, and stops as soon as it touches the ground again. The volume of the set of points swept out by the larger log as it rolls over the smaller one can be expressed as $n \pi$, where $n$ is an integer. Find $n$.

2015 ISI Entrance Examination, 2

Let $y = x^2 + ax + b$ be a parabola that cuts the coordinate axes at three distinct points. Show that the circle passing through these three points also passes through $(0,1)$.

2018 OMMock - Mexico National Olympiad Mock Exam, 5

Let $ABC$ be a triangle with circumcirle $\Gamma$, and let $M$ and $N$ be the respective midpoints of the minor arcs $AB$ and $AC$ of $\Gamma$. Let $P$ and $Q$ be points such that $AB=BP$, $AC=CQ$, and $P$, $B$, $C$, $Q$ lie on $BC$ in that order. Prove that $PM$ and $QN$ meet at a point on $\Gamma$. [i]Proposed by Victor Domínguez[/i]

2024 Taiwan TST Round 1, G

Tags: geometry
For the quadrilateral $ABCD$, let $AC$ and $BD$ intersect at $E$, $AB$ and $CD$ intersect at $F$, and $AD$ and $BC$ intersect at $G$. Additionally, let $W, X, Y$, and $Z$ be the points of symmetry to $E$ with respect to $AB, BC, CD,$ and $DA$ respectively. Prove that one of the intersection points of $\odot(FWY)$ and $\odot(GXZ)$ lies on the line $FG$. [i]Proposed by chengbilly[/i]

2017 NZMOC Camp Selection Problems, 2

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be the point on the line $AB$, distinct from $B$, such that $CG = CB$. Let $H$ be the point on the line $BC$, distinct from $B$, such that $AB = AH$. Prove that triangle $DGH$ is isosceles.

2002 China Team Selection Test, 2

There are $ n$ points ($ n \geq 4$) on a sphere with radius $ R$, and not all of them lie on the same semi-sphere. Prove that among all the angles formed by any two of the $ n$ points and the sphere centre $ O$ ($ O$ is the vertex of the angle), there is at least one that is not less than $ \displaystyle 2 \arcsin{\frac{\sqrt{6}}{3}}$.