This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2021 Princeton University Math Competition, A7

Tags: geometry
Let $ABC$ be a triangle with side lengths $AB = 13$, $AC = 17$, and $BC = 20$. Let $E, F$ be the feet of the altitudes from $B$ onto $AC$ and $C$ onto $AB$, respectively. Let $P$ be the second intersection of the circumcircles of $ABC$ and $AEF$. Suppose that $AP$ can be written as $\frac{a \sqrt{b}}{c}$ where $a, c$ are relatively prime and $b$ is square-free. Compute $a$.

2011 Tournament of Towns, 2

In the coordinate space, each of the eight vertices of a rectangular box has integer coordinates. If the volume of the solid is $2011$, prove that the sides of the rectangular box are parallel to the coordinate axes.

2013 Stanford Mathematics Tournament, 11

Sara has an ice cream cone with every meal. The cone has a height of $2\sqrt2$ inches and the base of the cone has a diameter of $2$ inches. Ice cream protrudes from the top of the cone in a perfect hempisphere. Find the surface area of the ice cream cone, ice cream included, in square inches.

2004 Harvard-MIT Mathematics Tournament, 7

Tags: geometry , calculus
Find the area of the region in the $xy$-plane satisfying $x^6-x^2+y^2 \le 0$.

2018 PUMaC Geometry A, 6

Let triangle $ABC$ have $\angle BAC = 45^{\circ}$ and circumcircle $\Gamma$ and let $M$ be the intersection of the angle bisector of $\angle BAC$ with $\Gamma$. Let $\Omega$ be the circle tangent to segments $\overline{AB}$ and $\overline{AC}$ and internally tangent to $\Gamma$ at point $T$. Given that $\angle TMA = 45^{\circ}$ and that $TM = \sqrt{100 - 50 \sqrt{2}}$, the length of $BC$ can be written as $a \sqrt{b}$, where $b$ is not divisible by the square of any prime. Find $a + b$.

2013 Dutch IMO TST, 5

Let $ABCDEF$ be a cyclic hexagon satisfying $AB\perp BD$ and $BC=EF$.Let $P$ be the intersection of lines $BC$ and $AD$ and let $Q$ be the intersection of lines $EF$ and $AD$.Assume that $P$ and $Q$ are on the same side of $D$ and $A$ is on the opposite side.Let $S$ be the midpoint of $AD$.Let $K$ and $L$ be the incentres of $\triangle BPS$ and $\triangle EQS$ respectively.Prove that $\angle KDL=90^0$.

May Olympiad L1 - geometry, 2013.3

Let $ABCD$ be a square of side paper $10$ and $P$ a point on side $BC$. By folding the paper along the $AP$ line, point $B$ determines the point $Q$, as seen in the figure. The line $PQ$ cuts the side $CD$ at $R$. Calculate the perimeter of the triangle $ PCR$ [img]https://3.bp.blogspot.com/-ZSyCUznwutE/XNY7cz7reQI/AAAAAAAAKLc/XqgQnjm8DQYq6Q7fmCAKJwKt3ihoL8AuQCK4BGAYYCw/s400/may%2B2013%2Bl1.png[/img]

2020 Iran MO (2nd Round), P4

Let $\omega_1$ and $\omega_2$ be two circles that intersect at point $A$ and $B$. Define point $X$ on $\omega_1$ and point $Y$ on $\omega_2$ such that the line $XY$ is tangent to both circles and is closer to $B$. Define points $C$ and $D$ the reflection of $B$ WRT $X$ and $Y$ respectively. Prove that the angle $\angle{CAD}$ is less than $90^{\circ}$

2010 National Olympiad First Round, 5

Let $ABCD$ be a convex quadrilateral such that $|AB|=10$, $|CD|=3\sqrt 6$, $m(\widehat{ABD})=60^\circ$, $m(\widehat{BDC})=45^\circ$, and $|BD|=13+3\sqrt 3$. What is $|AC|$ ? $ \textbf{(A)}\ 20 \qquad\textbf{(B)}\ 18 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 12 $

1985 Traian Lălescu, 1.4

Let $ ABC $ a right triangle in $ A. $ Let $ D $ a point on the segment $ AC, $ and $ E,F $ the projections of $ A $ upon the lines $ BD, $ respectively, $ BC. $ Show that the quadrilateral $ CDEF $ is concyclic.

2018 Costa Rica - Final Round, G2

Consider $\vartriangle ABC$, with $AD$ bisecting $\angle BAC$, $D$ on segment $BC$. Let $E$ be a point on $BC$, such that $BD = EC$. Through $E$ we draw the line $\ell$ parallel to $AD$ and consider a point $ P$ on it and inside the $\vartriangle ABC$. Let $G$ be the point where line $BP$ cuts side $AC$ and let F be the point where line $CP$ to side $AB$. Show that $BF = CG$.

2011 All-Russian Olympiad Regional Round, 11.6

$\omega$ is the circumcirle of an acute triangle $ABC$. The tangent line passing through $A$ intersects the tangent lines passing through points $B$ and $C$ at points $K$ and $L$, respectively. The line parallel to $AB$ through $K$ and the line parallel to $AC$ through $L$ intersect at point $P$. Prove that $BP=CP$. (Author: P. Kozhevnikov)

2013 Pan African, 1

Let $ABCD$ be a convex quadrilateral with $AB$ parallel to $CD$. Let $P$ and $Q$ be the midpoints of $AC$ and $BD$, respectively. Prove that if $\angle ABP=\angle CBD$, then $\angle BCQ=\angle ACD$.

1998 Czech and Slovak Match, 1

Let $P$ be an interior point of the parallelogram $ABCD$. Prove that $\angle APB+ \angle CPD = 180^\circ$ if and only if $\angle PDC = \angle PBC$.

2021 Oral Moscow Geometry Olympiad, 1

Points $A,B,C,D$ have been marked on checkered paper (see fig.). Find the tangent of the angle $ABD$. [img]https://cdn.artofproblemsolving.com/attachments/6/1/eeb98ccdee801361f9f66b8f6b2da4714e659f.png[/img]

2002 China Team Selection Test, 1

In acute triangle $ ABC$, show that: $ \sin^3{A}\cos^2{(B \minus{} C)} \plus{} \sin^3{B}\cos^2{(C \minus{} A)} \plus{} \sin^3{C}\cos^2{(A \minus{} B)} \leq 3\sin{A} \sin{B} \sin{C}$ and find out when the equality holds.

2007 Stanford Mathematics Tournament, 4

Tags: geometry
What is the area of the smallest triangle with all side lengths rational and all vertices lattice points?

2005 Vietnam National Olympiad, 2

Let $(O)$ be a fixed circle with the radius $R$. Let $A$ and $B$ be fixed points in $(O)$ such that $A,B,O$ are not collinear. Consider a variable point $C$ lying on $(O)$ ($C\neq A,B$). Construct two circles $(O_1),(O_2)$ passing through $A,B$ and tangent to $BC,AC$ at $C$, respectively. The circle $(O_1)$ intersects the circle $(O_2)$ in $D$ ($D\neq C$). Prove that: a) \[ CD\leq R \] b) The line $CD$ passes through a point independent of $C$ (i.e. there exists a fixed point on the line $CD$ when $C$ lies on $(O)$).

2018 IMO Shortlist, G3

Tags: geometry
A circle $\omega$ with radius $1$ is given. A collection $T$ of triangles is called [i]good[/i], if the following conditions hold: [list=1] [*] each triangle from $T$ is inscribed in $\omega$; [*] no two triangles from $T$ have a common interior point. [/list] Determine all positive real numbers $t$ such that, for each positive integer $n$, there exists a good collection of $n$ triangles, each of perimeter greater than $t$.

2012 South East Mathematical Olympiad, 3

In $\triangle ABC$, point $D$ lies on side $AC$ such that $\angle ABD=\angle C$. Point $E$ lies on side $AB$ such that $BE=DE$. $M$ is the midpoint of segment $CD$. Point $H$ is the foot of the perpendicular from $A$ to $DE$. Given $AH=2-\sqrt{3}$ and $AB=1$, find the size of $\angle AME$.

1994 Tournament Of Towns, (419) 7

Consider an arbitrary “figure” $F$ (non convex polygon). A chord of $F$ is defined to be a segment which lies entirely within $ F$ and whose ends are on its boundary. (a) Does there always exist a chord of $F$ that divides its area in half? (b) Prove that for any $F$ there exists a chord such that the area of each of the two parts of $F$ is not less than $ 1/3$ of the area of $F$. (c) Can the number $1/3$ in (b) be changed to a greater one? (V Proizvolov)

1992 Iran MO (2nd round), 2

Tags: geometry
In triangle $ABC,$ we have $\angle A \leq 90^\circ$ and $\angle B = 2 \angle C.$ The interior bisector of the angle $C$ meets the median $AM$ in $D.$ Prove that $\angle MDC \leq 45^\circ.$ When does equality hold? [asy] import graph; size(200); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqqqzz = rgb(0,0,0.6); pen ffqqtt = rgb(1,0,0.2); pen qqwuqq = rgb(0,0.39,0); draw((3.14,5.81)--(3.23,0.74),ffqqtt+linewidth(2pt)); draw((3.23,0.74)--(9.73,1.32),ffqqtt+linewidth(2pt)); draw((9.73,1.32)--(3.14,5.81),ffqqtt+linewidth(2pt)); draw((9.73,1.32)--(3.19,2.88)); draw((3.14,5.81)--(6.71,1.05)); pair parametricplot0_cus(real t){ return (0.7*cos(t)+5.8,0.7*sin(t)+2.26); } draw(graph(parametricplot0_cus,-0.9270442638657642,-0.23350086562377703)--(5.8,2.26)--cycle,qqwuqq); dot((3.14,5.81),ds); label("$A$", (2.93,6.09),NE*lsf); dot((3.23,0.74),ds); label("$B$", (2.88,0.34),NE*lsf); dot((9.73,1.32),ds); label("$C$", (10.11,1.04),NE*lsf); dot((3.19,2.88),ds); label("$X$", (2.77,2.94),NE*lsf); dot((6.71,1.05),ds); label("$M$", (6.75,0.5),NE*lsf); dot((5.8,2.26),ds); label("$D$", (5.89,2.4),NE*lsf); label("$\alpha$", (6.52,1.65),NE*lsf); clip((-3.26,-11.86)--(-3.26,8.36)--(20.76,8.36)--(20.76,-11.86)--cycle); [/asy]

2020 Sharygin Geometry Olympiad, 20

Tags: geometry
The line touching the incircle of triangle $ABC$ and parallel to $BC$ meets the external bisector of angle $A$ at point $X$. Let $Y$ be the midpoint of arc $BAC$ of the circumcircle. Prove that the angle $XIY$ is right.

2022 Iranian Geometry Olympiad, 1

Tags: pentagon , geometry
Find the angles of the pentagon $ABCDE$ in the figure below.

2016 Romania National Olympiad, 1

The orthocenter $ H $ of a triangle $ ABC $ is distinct from its vertices and its circumcenter $ O. $ $ M,N,P $ are the circumcenters of the triangles $ HBC,HCA, $ respectively, $ HAB. $ Prove that $ AM,BN,CP $ and $ OH $ are concurrent.