This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2002 Chile National Olympiad, 7

A convex polygon of sides $\ell_1, \ell_2, ..., \ell_n$ is called [i]ordered [/i] if for all reordering $( \sigma (1), \sigma (2), ..., \sigma (n))$ of the set $(1, 2,..., n)$ there exists a point $P$ inside the polygon such that $d_{\sigma (1)} < _{\sigma (2)} <...< d_{\sigma (n)}$ , where $d_i$ represents the distance between $P$ and side $\ell_i$. Find all the convex ordered polygons.

Ukrainian TYM Qualifying - geometry, 2010.12

On the plane is drawn a triangle $ABC$ and a circle $\omega$ passing through the vertex $C$, the midpoints of the sides $AC$ and $BC$ and the point of intersection of the medians of the triangle $ABC$. The point $K$ lies on the circle $\omega$ such that $\angle AKB=90^o$. Using only with a ruler, draw a tangent to the circle $\omega$ at point $K$.

2003 All-Russian Olympiad, 2

Is it possible to write a positive integer in every cell of an infinite chessboard, in such a manner that, for all positive integers $m, n$, the sum of numbers in every $m\times n$ rectangle is divisible by $m + n$ ?

2012 CHMMC Spring, 10

A convex polygon in the Cartesian plane has all of its vertices on integer coordinates. One of the sides of the polygon is $AB$ where $A = (0, 0)$ and $B = (51, 51)$, and the interior angles at $A$ and $B$ are both at most $45$ degrees. Assuming no $180$ degree angles, what is the maximum number of vertices this polygon can have?

2001 Tournament Of Towns, 1

Tags: geometry
An altitude of a pentagon is the perpendicular drop from a vertex to the opposite side. A median of a pentagon is the line joining a vertex to the midpoint of the opposite side. If the five altitudes and the five medians all have the same length, prove that the pentagon is regular.

2016 Latvia National Olympiad, 5

Consider the graphs of all the functions $y = x^2 + px + q$ having 3 different intersection points with the coordinate axes. For every such graph we pick these 3 intersection points and draw a circumcircle through them. Prove that all these circles have a common point!

1991 Putnam, B3

Can we find $N$ such that all $m\times n$ rectangles with $m,n>N$ can be tiled with $4\times6$ and $5\times7$ rectangles?

2005 Oral Moscow Geometry Olympiad, 4

Given a hexagon $ABCDEF$, in which $AB = BC, CD = DE, EF = FA$, and angles $A$ and $C$ are right. Prove that lines $FD$ and $BE$ are perpendicular. (B. Kukushkin)

2006 JHMT, 5

An ant is on the bottom edge of a right circular cone with base area $\pi$ and slant length $6$. What is the shortest distance that the ant has to travel to loop around the cone and come back to its starting position?

1977 IMO Longlists, 58

Prove that for every triangle the following inequality holds: \[\frac{ab+bc+ca}{4S} \geq \cot \frac{\pi}{6}.\] where $a, b, c$ are lengths of the sides and $S$ is the area of the triangle.

2014 National Olympiad First Round, 1

Tags: geometry
Let $ABCD$ be a convex quadrilateral such that $m \left (\widehat{DAB} \right )=m \left (\widehat{CBD} \right )=120^{\circ}$, $|AB|=2$, $|AD|=4$ and $|BC|=|BD|$. If the line through $C$ which is parallel to $AB$ meets $AD$ at $E$, what is $|CE|$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ \text{None of the preceding} $

2021 AMC 10 Spring, 17

Trapezoid $ABCD$ has $\overline{AB} \parallel \overline{CD}$, $BC = CD = 43$, and $\overline{AD} \perp \overline{BD}$. Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$, and let $P$ be the midpoint of $\overline{BD}$. GIven that $OP = 11$, the length $AD$ can be written in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m + n$? $\textbf{(A)}\: 65\qquad\textbf{(B)}\: 132\qquad\textbf{(C)}\: 157\qquad\textbf{(D)}\: 194\qquad\textbf{(E)}\: 215$

2011 Nordic, 2

Tags: geometry , ratio
In a triangle $ABC$ assume $AB = AC$, and let $D$ and $E$ be points on the extension of segment $BA$ beyond $A$ and on the segment $BC$, respectively, such that the lines $CD$ and $AE$ are parallel. Prove $CD \ge \frac{4h}{BC}CE$, where $h$ is the height from $A$ in triangle $ABC$. When does equality hold?

1969 IMO Longlists, 21

$(FRA 4)$ A right-angled triangle $OAB$ has its right angle at the point $B.$ An arbitrary circle with center on the line $OB$ is tangent to the line $OA.$ Let $AT$ be the tangent to the circle different from $OA$ ($T$ is the point of tangency). Prove that the median from $B$ of the triangle $OAB$ intersects $AT$ at a point $M$ such that $MB = MT.$

2004 Germany Team Selection Test, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

Russian TST 2020, P1

Tags: geometry
Let $ABC$ be an acute-angled triangle and let $D, E$, and $F$ be the feet of altitudes from $A, B$, and $C$ to sides $BC, CA$, and $AB$, respectively. Denote by $\omega_B$ and $\omega_C$ the incircles of triangles $BDF$ and $CDE$, and let these circles be tangent to segments $DF$ and $DE$ at $M$ and $N$, respectively. Let line $MN$ meet circles $\omega_B$ and $\omega_C$ again at $P \ne M$ and $Q \ne N$, respectively. Prove that $MP = NQ$. (Vietnam)

1998 Israel National Olympiad, 7

A polygonal line of the length $1001$ is given in a unit square. Prove that there exists a line parallel to one of the sides of the square that meets the polygonal line in at least $500$ points.

2019 Iranian Geometry Olympiad, 2

Tags: geometry
Find all quadrilaterals $ABCD$ such that all four triangles $DAB$, $CDA$, $BCD$ and $ABC$ are similar to one-another. [i]Proposed by Morteza Saghafian[/i]

2009 Spain Mathematical Olympiad, 2

Let $ ABC$ be an acute triangle with the incircle $ C(I,r)$ and the circumcircle $ C(O,R)$ . Denote $ D\in BC$ for which $ AD\perp BC$ and $ AD \equal{} h_a$ . Prove that $ DI^2 \equal{} (2R \minus{} h_a)(h_a \minus{} 2r)$ .

1967 IMO Longlists, 10

The square $ABCD$ has to be decomposed into $n$ triangles (which are not overlapping) and which have all angles acute. Find the smallest integer $n$ for which there exist a solution of that problem and for such $n$ construct at least one decomposition. Answer whether it is possible to ask moreover that (at least) one of these triangles has the perimeter less than an arbitrarily given positive number.

2021 BMT, 22

Tags: geometry
In $\vartriangle ABC$, let $D$ and $E$ be points on the angle bisector of $\angle BAC$ such that $\angle ABD = \angle ACE =90^o$ . Furthermore, let $F$ be the intersection of $AE$ and $BC$, and let $O$ be the circumcenter of $\vartriangle AF C$. If $\frac{AB}{AC} =\frac{3}{4}$, $AE = 40$, and $BD$ bisects $EF$, compute the perpendicular distance from $A$ to $OF$.

2018 Romania National Olympiad, 2

In the square $ABCD$ the point $E$ is located on the side $[AB]$, and $F$ is the foot of the perpendicular from $B$ on the line $DE$. The point $L$ belongs to the line $DE$, such that $F$ is between $E$ and $L$, and $FL = BF$. $N$ and $P$ are symmetric of the points $A , F$ with respect to the lines $DE, BL$, respectively. Prove that: a) The quadrilateral $BFLP$ is square and the quadrilateral $ALND$ is rhombus. b) The area of the rhombus $ALND$ is equal to the difference between the areas of the squares $ABCD$ and $BFLP$.

2001 IMC, 3

Find the maximum number of points on a sphere of radius $1$ in $\mathbb{R}^n$ such that the distance between any two of these points is strictly greater than $\sqrt{2}$.

2014 BMT Spring, P2

Tags: geometry
Let $ABC$ be a fixed scalene triangle. Suppose that $X, Y$ are variable points on segments $AB$, $AC$, respectively such that $BX = CY$ . Prove that the circumcircle of $\vartriangle AXY$ passes through a fixed point other than $A$.

2011 Middle European Mathematical Olympiad, 3

In a plane the circles $\mathcal K_1$ and $\mathcal K_2$ with centers $I_1$ and $I_2$, respectively, intersect in two points $A$ and $B$. Assume that $\angle I_1AI_2$ is obtuse. The tangent to $\mathcal K_1$ in $A$ intersects $\mathcal K_2$ again in $C$ and the tangent to $\mathcal K_2$ in $A$ intersects $\mathcal K_1$ again in $D$. Let $\mathcal K_3$ be the circumcircle of the triangle $BCD$. Let $E$ be the midpoint of that arc $CD$ of $\mathcal K_3$ that contains $B$. The lines $AC$ and $AD$ intersect $\mathcal K_3$ again in $K$ and $L$, respectively. Prove that the line $AE$ is perpendicular to $KL$.