This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 393

2009 Ukraine Team Selection Test, 10

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2014 Iran Team Selection Test, 6

$I$ is the incenter of triangle $ABC$. perpendicular from $I$ to $AI$ meet $AB$ and $AC$ at ${B}'$ and ${C}'$ respectively . Suppose that ${B}''$ and ${C}''$ are points on half-line $BC$ and $CB$ such that $B{B}''=BA$ and $C{C}''=CA$. Suppose that the second intersection of circumcircles of $A{B}'{B}''$ and $A{C}'{C}''$ is $T$. Prove that the circumcenter of $AIT$ is on the $BC$.

2006 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$. [b](a)[/b] Prove that any two of the following statements imply the third. [list] [b](i)[/b] the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$. [b](ii)[/b] the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$. [b](iii)[/b] the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.[/list] [b](b)[/b] Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.

2004 Iran MO (3rd Round), 2

$A$ is a compact convex set in plane. Prove that there exists a point $O \in A$, such that for every line $XX'$ passing through $O$, where $X$ and $X'$ are boundary points of $A$, then \[ \frac12 \leq \frac {OX}{OX'} \leq 2.\]

2007 Germany Team Selection Test, 3

Circles $ w_{1}$ and $ w_{2}$ with centres $ O_{1}$ and $ O_{2}$ are externally tangent at point $ D$ and internally tangent to a circle $ w$ at points $ E$ and $ F$ respectively. Line $ t$ is the common tangent of $ w_{1}$ and $ w_{2}$ at $ D$. Let $ AB$ be the diameter of $ w$ perpendicular to $ t$, so that $ A, E, O_{1}$ are on the same side of $ t$. Prove that lines $ AO_{1}$, $ BO_{2}$, $ EF$ and $ t$ are concurrent.

1990 IMO Longlists, 74

Let $L$ be a subset in the coordinate plane defined by $L = \{(41x + 2y, 59x + 15y) | x, y \in \mathbb Z \}$, where $\mathbb Z$ is set of integers. Prove that for any parallelogram with center in the origin of coordinate and area $1990$, there exist at least two points of $L$ located in it.

2005 Croatia National Olympiad, 2

Let $U$ be the incenter of a triangle $ABC$ and $O_{1}, O_{2}, O_{3}$ be the circumcenters of the triangles $BCU, CAU, ABU$ , respectively. Prove that the circumcircles of the triangles $ABC$ and $O_{1}O_{2}O_{3}$ have the same center.

2010 USA Team Selection Test, 7

In triangle ABC, let $P$ and $Q$ be two interior points such that $\angle ABP = \angle QBC$ and $\angle ACP = \angle QCB$. Point $D$ lies on segment $BC$. Prove that $\angle APB + \angle DPC = 180^\circ$ if and only if $\angle AQC + \angle DQB = 180^\circ$.

2010 Contests, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2010 Indonesia TST, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2007 All-Russian Olympiad Regional Round, 10.4

Given a triangle $ ABC$. A circle passes through vertices $ B$ and $ C$ and intersects sides $ AB$ and $ AC$ at points $ D$ and $ E$, respectively. Segments $ CD$ and $ BE$ intersect at point $ O$. Denote the incenters of triangles $ ADE$ and $ ODE$ by $ M$ and $ N$, respectiely. Prove that the midpoint of the smaller arc $ DE$ lies on line $ MN$.

2004 All-Russian Olympiad, 3

A triangle $ T$ is contained inside a point-symmetrical polygon $ M.$ The triangle $ T'$ is the mirror image of the triangle $ T$ with the reflection at one point $ P$, which inside the triangle $ T$ lies. Prove that at least one of the vertices of the triangle $ T'$ lies in inside or on the boundary of the polygon $ M.$

1982 IMO Longlists, 35

If the inradius of a triangle is half of its circumradius, prove that the triangle is equilateral.

2007 Italy TST, 1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2000 All-Russian Olympiad, 7

Two circles are internally tangent at $N$. The chords $BA$ and $BC$ of the larger circle are tangent to the smaller circle at $K$ and $M$ respectively. $Q$ and $P$ are midpoint of arcs $AB$ and $BC$ respectively. Circumcircles of triangles $BQK$ and $BPM$ are intersect at $L$. Show that $BPLQ$ is a parallelogram.

2012 IMO Shortlist, G7

Let $ABCD$ be a convex quadrilateral with non-parallel sides $BC$ and $AD$. Assume that there is a point $E$ on the side $BC$ such that the quadrilaterals $ABED$ and $AECD$ are circumscribed. Prove that there is a point $F$ on the side $AD$ such that the quadrilaterals $ABCF$ and $BCDF$ are circumscribed if and only if $AB$ is parallel to $CD$.

2014 China Team Selection Test, 1

Let the circumcenter of triangle $ABC$ be $O$. $H_A$ is the projection of $A$ onto $BC$. The extension of $AO$ intersects the circumcircle of $BOC$ at $A'$. The projections of $A'$ onto $AB, AC$ are $D,E$, and $O_A$ is the circumcentre of triangle $DH_AE$. Define $H_B, O_B, H_C, O_C$ similarly. Prove: $H_AO_A, H_BO_B, H_CO_C$ are concurrent

2010 Contests, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2018 AIME Problems, 9

Octagon $ABCDEFGH$ with side lengths $AB = CD = EF = GH = 10$ and $BC= DE = FG = HA = 11$ is formed by removing four $6-8-10$ triangles from the corners of a $23\times 27$ rectangle with side $\overline{AH}$ on a short side of the rectangle, as shown. Let $J$ be the midpoint of $\overline{HA}$, and partition the octagon into $7$ triangles by drawing segments $\overline{JB}$, $\overline{JC}$, $\overline{JD}$, $\overline{JE}$, $\overline{JF}$, and $\overline{JG}$. Find the area of the convex polygon whose vertices are the centroids of these $7$ triangles. [asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("$A$", A, W*r); label("$B$", B, S*r); label("$C$", C, S*r); label("$D$", D, E*r); label("$E$", EE, E*r); label("$F$", F, N*r); label("$G$", G, N*r); label("$H$", H, W*r); label("$J$", J, W*r); [/asy]

2007 Germany Team Selection Test, 3

Circles $ w_{1}$ and $ w_{2}$ with centres $ O_{1}$ and $ O_{2}$ are externally tangent at point $ D$ and internally tangent to a circle $ w$ at points $ E$ and $ F$ respectively. Line $ t$ is the common tangent of $ w_{1}$ and $ w_{2}$ at $ D$. Let $ AB$ be the diameter of $ w$ perpendicular to $ t$, so that $ A, E, O_{1}$ are on the same side of $ t$. Prove that lines $ AO_{1}$, $ BO_{2}$, $ EF$ and $ t$ are concurrent.

2002 Moldova Team Selection Test, 3

The circles $W_1, W_2, W_3$ in the plane are pairwise externally tangent to each other. Let $P_1$ be the point of tangency between circles $W_1$ and $W_3$, and let $P_2$ be the point of tangency between circles $W_2$ and $W_3$. $A$ and $B$, both different from $P_1$ and $P_2$, are points on $W_3$ such that $AB$ is a diameter of $W_3$. Line $AP_1$ intersects $W_1$ again at $X$, line $BP_2$ intersects $W_2$ again at $Y$, and lines $AP_2$ and $BP_1$ intersect at $Z$. Prove that $X, Y$, and $Z$ are collinear.

2001 Czech-Polish-Slovak Match, 4

Distinct points $A$ and $B$ are given on the plane. Consider all triangles $ABC$ in this plane on whose sides $BC,CA$ points $D,E$ respectively can be taken so that (i) $\frac{BD}{BC}=\frac{CE}{CA}=\frac{1}{3}$; (ii) points $A,B,D,E$ lie on a circle in this order. Find the locus of the intersection points of lines $AD$ and $BE$.

2003 France Team Selection Test, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

2004 Iran MO (3rd Round), 16

Let $ABC$ be a triangle . Let point $X$ be in the triangle and $AX$ intersects $BC$ in $Y$ . Draw the perpendiculars $YP,YQ,YR,YS$ to lines $CA,CX,BX,BA$ respectively. Find the necessary and sufficient condition for $X$ such that $PQRS$ be cyclic .

2008 Brazil Team Selection Test, 4

The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]