Found problems: 393
2008 Sharygin Geometry Olympiad, 3
(V.Yasinsky, Ukraine) Suppose $ X$ and $ Y$ are the common points of two circles $ \omega_1$ and $ \omega_2$. The third circle $ \omega$ is internally tangent to $ \omega_1$ and $ \omega_2$ in $ P$ and $ Q$ respectively. Segment $ XY$ intersects $ \omega$ in points $ M$ and $ N$. Rays $ PM$ and $ PN$ intersect $ \omega_1$ in points $ A$ and $ D$; rays $ QM$ and $ QN$ intersect $ \omega_2$ in points $ B$ and $ C$ respectively. Prove that $ AB \equal{} CD$.
2016 Indonesia TST, 3
Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$
2006 Polish MO Finals, 2
Tetrahedron $ABCD$ in which $AB=CD$ is given. Sphere inscribed in it is tangent to faces $ABC$ and $ABD$ respectively in $K$ and $L$. Prove that if points $K$ and $L$ are centroids of faces $ABC$ and $ABD$ then tetrahedron $ABCD$ is regular.
2014 Brazil National Olympiad, 6
Let $ABC$ be a triangle with incenter $I$ and incircle $\omega$. Circle $\omega_A$ is externally tangent to $\omega$ and tangent to sides $AB$ and $AC$ at $A_1$ and $A_2$, respectively. Let $r_A$ be the line $A_1A_2$. Define $r_B$ and $r_C$ in a similar fashion. Lines $r_A$, $r_B$ and $r_C$ determine a triangle $XYZ$. Prove that the incenter of $XYZ$, the circumcenter of $XYZ$ and $I$ are collinear.
2003 Romania Team Selection Test, 2
Let $ABC$ be a triangle with $\angle BAC=60^\circ$. Consider a point $P$ inside the triangle having $PA=1$, $PB=2$ and $PC=3$. Find the maximum possible area of the triangle $ABC$.
1999 Balkan MO, 1
Let $O$ be the circumcenter of the triangle $ABC$. The segment $XY$ is the diameter of the circumcircle perpendicular to $BC$ and it meets $BC$ at $M$. The point $X$ is closer to $M$ than $Y$ and $Z$ is the point on $MY$ such that $MZ = MX$. The point $W$ is the midpoint of $AZ$.
a) Show that $W$ lies on the circle through the midpoints of the sides of $ABC$;
b) Show that $MW$ is perpendicular to $AY$.
2011 China Team Selection Test, 1
In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.
2006 India IMO Training Camp, 1
Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$.
[b](a)[/b] Prove that any two of the following statements imply the third.
[list]
[b](i)[/b] the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$.
[b](ii)[/b] the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$.
[b](iii)[/b] the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.[/list]
[b](b)[/b] Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.
1993 Polish MO Finals, 2
A circle center $O$ is inscribed in the quadrilateral $ABCD$. $AB$ is parallel to and longer than $CD$ and has midpoint $M$. The line $OM$ meets $CD$ at $F$. $CD$ touches the circle at $E$. Show that $DE = CF$ iff $AB = 2CD$.
2014 Postal Coaching, 3
The circles $\mathcal{K}_1,\mathcal{K}_2$ and $\mathcal{K}_3$ are pairwise externally tangent to each other; the point of tangency betwwen $\mathcal{K}_1$ and $\mathcal{K}_2$ is $T$. One of the external common tangents of $\mathcal{K}_1$ and $\mathcal{K}_2$ meets $\mathcal{K}_3$ at points $P$ and $Q$. Prove that the internal common tangent of $\mathcal{K}_1$ and $\mathcal{K}_2$ bisects the arc $PQ$ of $\mathcal{K}_3$ which is closer to $T$.
2012 Brazil Team Selection Test, 3
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
[i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]
2005 District Olympiad, 3
Let $ABC$ be a non-right-angled triangle and let $H$ be its orthocenter. Let $M_1,M_2,M_3$ be the midpoints of the sides $BC$, $CA$, $AB$ respectively. Let $A_1$, $B_1$, $C_1$ be the symmetrical points of $H$ with respect to $M_1$, $M_2$ and $M_3$ respectively, and let $A_2$, $B_2$, $C_2$ be the orthocenters of the triangles $BA_1C$, $CB_1A$ and $AC_1B$ respectively. Prove that:
a) triangles $ABC$ and $A_2B_2C_2$ have the same centroid;
b) the centroids of the triangles $AA_1A_2$, $BB_1B_2$, $CC_1C_2$ form a triangle similar with $ABC$.
1992 Romania Team Selection Test, 3
Let $ABCD$ be a tetrahedron; $B', C', D'$ be the midpoints of the edges $AB, AC, AD$; $G_A, G_B, G_C, G_D$ be the barycentres of the triangles $BCD, ACD, ABD, ABC$, and $G$ be the barycentre of the tetrahedron. Show that $A, G, G_B, G_C, G_D$ are all on a sphere if and only if $A, G, B', C', D'$ are also on a sphere.
[i]Dan Brânzei[/i]
2010 Contests, 2
Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$
2013 Sharygin Geometry Olympiad, 19
a) The incircle of a triangle $ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to the bisector $AL$ in points $Q$ and $P$ respectively. Prove that the lines $PC_0, QB_0$ and $BC$ concur.
b) Let $AL$ be the bisector of a triangle $ABC$. Points $O_1$ and $O_2$ are the circumcenters of triangles $ABL$ and $ACL$ respectively. Points $B_1$ and $C_1$ are the projections of $C$ and $B$ to the bisectors of angles $B$ and $C$ respectively. Prove that the lines $O_1C_1, O_2B_1,$ and $BC$ concur.
c) Prove that the two points obtained in pp. a) and b) coincide.
2013 Iran Team Selection Test, 12
Let $ABCD$ be a cyclic quadrilateral that inscribed in the circle $\omega$.Let $I_{1},I_{2}$ and $r_{1},r_{2}$ be incenters and radii of incircles of triangles $ACD$ and $ABC$,respectively.assume that $r_{1}=r_{2}$. let $\omega'$ be a circle that touches $AB,AD$ and touches $\omega$ at $T$. tangents from $A,T$ to $\omega$ meet at the point $K$.prove that $I_{1},I_{2},K$ lie on a line.
2007 China Team Selection Test, 1
Points $ A$ and $ B$ lie on the circle with center $ O.$ Let point $ C$ lies outside the circle; let $ CS$ and $ CT$ be tangents to the circle. $ M$ be the midpoint of minor arc $ AB$ of $ (O).$ $ MS,\,MT$ intersect $ AB$ at points $ E,\,F$ respectively. The lines passing through $ E,\,F$ perpendicular to $ AB$ cut $ OS,\,OT$ at $ X$ and $ Y$ respectively.
A line passed through $ C$ intersect the circle $ (O)$ at $ P,\,Q$ ($ P$ lies on segment $ CQ$). Let $ R$ be the intersection of $ MP$ and $ AB,$ and let $ Z$ be the circumcentre of triangle $ PQR.$
Prove that: $ X,\,Y,\,Z$ are collinear.
2009 Argentina Team Selection Test, 3
Let $ ABC$ be a triangle, $ B_1$ the midpoint of side $ AB$ and $ C_1$ the midpoint of side $ AC$. Let $ P$ be the point of intersection ($ \neq A$) of the circumcircles of triangles $ ABC_1$ and $ AB_1C$. Let $ Q$ be the point of intersection ($ \neq A$) of the line $ AP$ and the circumcircle of triangle $ AB_1C_1$.
Prove that $ \frac{AP}{AQ} \equal{} \frac{3}{2}$.
2009 Vietnam Team Selection Test, 1
Let an acute triangle $ ABC$ with curcumcircle $ (O)$. Call $ A_1,B_1,C_1$ are foots of perpendicular line from $ A,B,C$ to opposite side. $ A_2,B_2,C_2$ are reflect points of $ A_1,B_1,C_1$ over midpoints of $ BC,CA,AB$ respectively. Circle $ (AB_2C_2),(BC_2A_2),(CA_2B_2)$ cut $ (O)$ at $ A_3,B_3,C_3$ respectively.
Prove that: $ A_1A_3,B_1B_3,C_1C_3$ are concurent.
2002 South africa National Olympiad, 5
In acute-angled triangle $ABC$, a semicircle with radius $r_a$ is constructed with its base on $BC$ and tangent to the other two sides. $r_b$ and $r_c$ are defined similarly. $r$ is the radius of the incircle of $ABC$. Show that \[ \frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}. \]
2010 Iran Team Selection Test, 5
Circles $W_1,W_2$ intersect at $P,K$. $XY$ is common tangent of two circles which is nearer to $P$ and $X$ is on $W_1$ and $Y$ is on $W_2$. $XP$ intersects $W_2$ for the second time in $C$ and $YP$ intersects $W_1$ in $B$. Let $A$ be intersection point of $BX$ and $CY$. Prove that if $Q$ is the second intersection point of circumcircles of $ABC$ and $AXY$
\[\angle QXA=\angle QKP\]
2013 Iran MO (3rd Round), 1
Let $ABCDE$ be a pentagon inscribe in a circle $(O)$. Let $ BE \cap AD = T$. Suppose the parallel line with $CD$ which passes through $T$ which cut $AB,CE$ at $X,Y$. If $\omega$ be the circumcircle of triangle $AXY$ then prove that $\omega$ is tangent to $(O)$.
2008 IberoAmerican, 5
Let $ ABC$ a triangle and $ X$, $ Y$ and $ Z$ points at the segments $ BC$, $ AC$ and $ AB$, respectively.Let $ A'$, $ B'$ and $ C'$ the circuncenters of triangles $ AZY$,$ BXZ$,$ CYX$, respectively.Prove that $ 4(A'B'C')\geq(ABC)$ with equality if and only if $ AA'$, $ BB'$ and $ CC'$ are concurrents.
Note: $ (XYZ)$ denotes the area of $ XYZ$
2001 All-Russian Olympiad, 2
Let the circle $ {\omega}_{1}$ be internally tangent to another circle $ {\omega}_{2}$ at $ N$.Take a point $ K$ on $ {\omega}_{1}$ and draw a tangent $ AB$ which intersects $ {\omega}_{2}$ at $ A$ and $ B$. Let $M$ be the midpoint of the arc $ AB$ which is on the opposite side of $ N$. Prove that, the circumradius of the $ \triangle KBM$ doesnt depend on the choice of $ K$.
1994 All-Russian Olympiad, 7
Let $ \Gamma_1,\Gamma_2$ and $ \Gamma_3$ be three non-intersecting circles,which are tangent to the circle $ \Gamma$ at points $ A_1,B_1,C_1$,respectively.Suppose that common tangent lines to $ (\Gamma_2,\Gamma_3)$,$ (\Gamma_1,\Gamma_3)$,$ (\Gamma_2,\Gamma_1)$ intersect in points $ A,B,C$.
Prove that lines $ AA_1,BB_1,CC_1$ are concurrent.