This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 393

2007 Italy TST, 1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2011 China Girls Math Olympiad, 8

The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.

2005 Junior Balkan Team Selection Tests - Romania, 11

Three circles $\mathcal C_1(O_1)$, $\mathcal C_2(O_2)$ and $\mathcal C_3(O_3)$ share a common point and meet again pairwise at the points $A$, $B$ and $C$. Show that if the points $A$, $B$, $C$ are collinear then the points $Q$, $O_1$, $O_2$ and $O_3$ lie on the same circle.

2018 Germany Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2025 Austrian MO National Competition, 2

Let $\triangle{ABC}$ be an acute triangle with $BC > AC$. Let $S$ be the centroid of triangle $ABC$ and let $F$ be the foot of the perpendicular from $C$ to side $AB$. The median $CS$ intersects the circumcircle $\gamma$ of triangle $\triangle{ABC}$ at a second point $P$. Let $M$ be the point where $CS$ intersects $AB$. The line $SF$ intersects the circle $\gamma$ at a point $Q$, such that $F$ lies between $S$ and $Q$. Prove that the points $M,P,Q$ and $F$ lie on a circle. [i](Karl Czakler)[/i]

2005 All-Russian Olympiad, 3

We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.

1999 IMO, 5

Two circles $\Omega_{1}$ and $\Omega_{2}$ touch internally the circle $\Omega$ in M and N and the center of $\Omega_{2}$ is on $\Omega_{1}$. The common chord of the circles $\Omega_{1}$ and $\Omega_{2}$ intersects $\Omega$ in $A$ and $B$. $MA$ and $MB$ intersects $\Omega_{1}$ in $C$ and $D$. Prove that $\Omega_{2}$ is tangent to $CD$.

2007 India IMO Training Camp, 1

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2008 Junior Balkan Team Selection Tests - Romania, 4

Let $ d$ be a line and points $ M,N$ on the $ d$. Circles $ \alpha,\beta,\gamma,\delta$ with centers $ A,B,C,D$ are tangent to $ d$, circles $ \alpha,\beta$ are externally tangent at $ M$, and circles $ \gamma,\delta$ are externally tangent at $ N$. Points $ A,C$ are situated in the same half-plane, determined by $ d$. Prove that if exists an circle, which is tangent to the circles $ \alpha,\beta,\gamma,\delta$ and contains them in its interior, then lines $ AC,BD,MN$ are concurrent or parallel.

2005 Hungary-Israel Binational, 1

Squares $ABB_{1}A_{2}$ and $BCC_{1}B_{2}$ are externally drawn on the hypotenuse $AB$ and on the leg $BC$ of a right triangle $ABC$ . Show that the lines $CA_{2}$ and $AB_{2}$ meet on the perimeter of a square with the vertices on the perimeter of triangle $ABC .$

2014 Contests, 3

Let $\Gamma_1$ be a circle and $P$ a point outside of $\Gamma_1$. The tangents from $P$ to $\Gamma_1$ touch the circle at $A$ and $B$. Let $M$ be the midpoint of $PA$ and $\Gamma_2$ the circle through $P$, $A$ and $B$. Line $BM$ cuts $\Gamma_2$ at $C$, line $CA$ cuts $\Gamma_1$ at $D$, segment $DB$ cuts $\Gamma_2$ at $E$ and line $PE$ cuts $\Gamma_1$ at $F$, with $E$ in segment $PF$. Prove lines $AF$, $BP$, and $CE$ are concurrent.

2004 Vietnam Team Selection Test, 3

In the plane, there are two circles $\Gamma_1, \Gamma_2$ intersecting each other at two points $A$ and $B$. Tangents of $\Gamma_1$ at $A$ and $B$ meet each other at $K$. Let us consider an arbitrary point $M$ (which is different of $A$ and $B$) on $\Gamma_1$. The line $MA$ meets $\Gamma_2$ again at $P$. The line $MK$ meets $\Gamma_1$ again at $C$. The line $CA$ meets $\Gamma_2 $ again at $Q$. Show that the midpoint of $PQ$ lies on the line $MC$ and the line $PQ$ passes through a fixed point when $M$ moves on $\Gamma_1$. [color=red][Moderator edit: This problem was also discussed on http://www.mathlinks.ro/Forum/viewtopic.php?t=21414 .][/color]

2010 Sharygin Geometry Olympiad, 18

A point $B$ lies on a chord $AC$ of circle $\omega.$ Segments $AB$ and $BC$ are diameters of circles $\omega_1$ and $\omega_2$ centered at $O_1$ and $O_2$ respectively. These circles intersect $\omega$ for the second time in points $D$ and $E$ respectively. The rays $O_1D$ and $O_2E$ meet in a point $F,$ and the rays $AD$ and $CE$ do in a point $G.$ Prove that the line $FG$ passes through the midpoint of the segment $AC.$

2006 All-Russian Olympiad, 4

Given a triangle $ ABC$. The angle bisectors of the angles $ ABC$ and $ BCA$ intersect the sides $ CA$ and $ AB$ at the points $ B_1$ and $ C_1$, and intersect each other at the point $ I$. The line $ B_1C_1$ intersects the circumcircle of triangle $ ABC$ at the points $ M$ and $ N$. Prove that the circumradius of triangle $ MIN$ is twice as long as the circumradius of triangle $ ABC$.

2012 Romanian Masters In Mathematics, 6

Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$. [i](Russia) Fedor Ivlev[/i]

2018 Azerbaijan IMO TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2018 India IMO Training Camp, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2012 India National Olympiad, 4

Let $ABC$ be a triangle. An interior point $P$ of $ABC$ is said to be [i]good [/i]if we can find exactly $27$ rays emanating from $P$ intersecting the sides of the triangle $ABC$ such that the triangle is divided by these rays into $27$ [i]smaller triangles of equal area.[/i] Determine the number of good points for a given triangle $ABC$.

2012 IMO Shortlist, G3

In an acute triangle $ABC$ the points $D,E$ and $F$ are the feet of the altitudes through $A,B$ and $C$ respectively. The incenters of the triangles $AEF$ and $BDF$ are $I_1$ and $I_2$ respectively; the circumcenters of the triangles $ACI_1$ and $BCI_2$ are $O_1$ and $O_2$ respectively. Prove that $I_1I_2$ and $O_1O_2$ are parallel.

2025 Bangladesh Mathematical Olympiad, P6

Suppose $X$ and $Y$ are the common points of two circles $\omega_1$ and $\omega_2$. The third circle $\omega$ is internally tangent to $\omega_1$ and $\omega_2$ in $P$ and $Q$, respectively. Segment $XY$ intersects $\omega$ in points $M$ and $N$. Rays $PM$ and $PN$ intersect $\omega_1$ in points $A$ and $D$; rays $QM$ and $QN$ intersect $\omega_2$ in points $B$ and $C$, respectively. Prove that $AB = CD$.

1976 Canada National Olympiad, 4

Let $ AB$ be a diameter of a circle, $ C$ be any fixed point between $ A$ and $ B$ on this diameter, and $ Q$ be a variable point on the circumference of the circle. Let $ P$ be the point on the line determined by $ Q$ and $ C$ for which $ \frac{AC}{CB}\equal{}\frac{QC}{CP}$. Describe, with proof, the locus of the point $ P$.

2014 ELMO Shortlist, 1

Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear. [i]Proposed by Sammy Luo[/i]

2005 Nordic, 4

The circle $\zeta_{1}$ is inside the circle $\zeta_{2}$, and the circles touch each other at $A$. A line through $A$ intersects $\zeta_{1}$ also at $B$, and $\zeta_{2}$ also at $C$. The tangent to $\zeta_{1}$ at $B$ intersects $\zeta_{2}$ at $D$ and $E$. The tangents of $\zeta_{1}$ passing thorugh $C$ touch $\zeta_{2}$ at $F$ and $G$. Prove that $D$, $E$, $F$ and $G$ are concyclic.

2001 ITAMO, 5

Let $ABC$ be a triangle and $\gamma$ the circle inscribed in $ABC$. The circle $\gamma$ is tangent to side $AB$ at the point $T$. Let $D$ be the point of $\gamma$ diametrically opposite to $T$, and $S$ the intersection point of the line through $C$ and $D$ with side $AB$. Prove that $AT=SB$.

2006 Germany Team Selection Test, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]