This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

Novosibirsk Oral Geo Oly IX, 2019.2

Tags: geometry , incenter
An angle bisector $AD$ was drawn in triangle $ABC$. It turned out that the center of the inscribed circle of triangle $ABC$ coincides with the center of the inscribed circle of triangle $ABD$. Find the angles of the original triangle.

2003 Germany Team Selection Test, 2

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

2012 India IMO Training Camp, 1

Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$. [i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]

2021 Latvia Baltic Way TST, P11

Incircle of $\triangle ABC$ has centre $I$ and touches sides $AC, AB$ at $E,F$, respectively. The perpendicular bisector of segment $AI$ intersects side $AC$ at $P$. On side $AB$ a point $Q$ is chosen so that $QI \perp FP$. Prove that $EQ \perp AB$.

2013 India Regional Mathematical Olympiad, 5

In a triangle $ABC$, let $H$ denote its orthocentre. Let $P$ be the reflection of $A$ with respect to $BC$. The circumcircle of triangle $ABP$ intersects the line $BH$ again at $Q$, and the circumcircle of triangle $ACP$ intersects the line $CH$ again at $R$. Prove that $H$ is the incentre of triangle $PQR$.

2023 Greece National Olympiad, 3

A triangle $ABC$ with $AB>AC$ is given, $AD$ is the A-angle bisector with point $D$ on $BC$ and point $I$ is the incenter of triangle $ABC$. Point M is the midpoint of segment $AD$ and point $F$ is the second intersection of $MB$ with the circumcirle of triangle $BIC$. Prove that $AF\bot FC$.

2013 ELMO Problems, 4

Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$. [i]Proposed by Evan Chen[/i]

2002 All-Russian Olympiad, 2

Point $A$ lies on one ray and points $B,C$ lie on the other ray of an angle with the vertex at $O$ such that $B$ lies between $O$ and $C$. Let $O_1$ be the incenter of $\triangle OAB$ and $O_2$ be the center of the excircle of $\triangle OAC$ touching side $AC$. Prove that if $O_1A = O_2A$, then the triangle $ABC$ is isosceles.

1998 China National Olympiad, 1

Let $ABC$ be a non-obtuse triangle satisfying $AB>AC$ and $\angle B=45^{\circ}$. The circumcentre $O$ and incentre $I$ of triangle $ABC$ are such that $\sqrt{2}\ OI=AB-AC$. Find the value of $\sin A$.

2015 Taiwan TST Round 2, 1

Let $ABC$ be a triangle with incircle $\omega$, incenter $I$ and circumcircle $\Gamma$. Let $D$ be the tangency point of $\omega$ with $BC$, let $M$ be the midpoint of $ID$, and let $A'$ be the diametral opposite of $A$ with respect to $\Gamma$. If we denote $X=A'M\cap \Gamma$, then prove that the circumcircle of triangle $AXD$ is tangent to $BC$.

2008 Indonesia TST, 1

Let $ABCD$ be a cyclic quadrilateral, and angle bisectors of $\angle BAD$ and $\angle BCD$ meet at point $I$. Show that if $\angle BIC = \angle IDC$, then $I$ is the incenter of triangle $ABD$.

2013 NIMO Problems, 7

Tags: geometry , incenter
Let $ABCD$ be a convex quadrilateral for which $DA = AB$ and $CA = CB$. Set $I_0 = C$ and $J_0 = D$, and for each nonnegative integer $n$, let $I_{n+1}$ and $J_{n+1}$ denote the incenters of $\triangle I_nAB$ and $\triangle J_nAB$, respectively. Suppose that \[ \angle DAC = 15^{\circ}, \quad \angle BAC = 65^{\circ} \quad \text{and} \quad \angle J_{2013}J_{2014}I_{2014} = \left( 90 + \frac{2k+1}{2^n} \right)^{\circ} \] for some nonnegative integers $n$ and $k$. Compute $n+k$. [i]Proposed by Evan Chen[/i]

2021 Israel TST, 3

In an inscribed quadrilateral $ABCD$, we have $BC=CD$ but $AB\neq AD$. Points $I$ and $J$ are the incenters of triangles $ABC$ and $ACD$ respectively. Point $K$ was chosen on segment $AC$ so that $IK=JK$. Points $M$ and $N$ are the incenters of triangles $AIK$ and $AJK$. Prove that the perpendicular to $CD$ at $D$ and the perpendicular to $KI$ at $I$ intersect on the circumcircle of $MAN$.

Cono Sur Shortlist - geometry, 2005.G3.4

Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.

2013 Sharygin Geometry Olympiad, 16

The incircle of triangle $ABC$ touches $BC$, $CA$, $AB$ at points $A_1$, $B_1$, $C_1$, respectively. The perpendicular from the incenter $I$ to the median from vertex $C$ meets the line $A_1B_1$ in point $K$. Prove that $CK$ is parallel to $AB$.

2021 Spain Mathematical Olympiad, 6

Let $ABC$ be a triangle with $AB \neq AC$, let $I$ be its incenter, $\gamma$ its inscribed circle and $D$ the midpoint of $BC$. The tangent to $\gamma$ from $D$ different to $BC$ touches $\gamma$ in $E$. Prove that $AE$ and $DI$ are parallel.

2008 China Team Selection Test, 1

Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.

2025 Benelux, 3

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\Omega$. Let $D, E, F$ be the midpoints of the arcs $\stackrel{\frown}{BC}, \stackrel{\frown}{CA}, \stackrel{\frown}{AB}$ of $\Omega$ not containing $A, B, C$ respectively. Let $D'$ be the point of $\Omega$ diametrically opposite to $D$. Show that $I, D'$ and the midpoint $M$ of $EF$ lie on a line.

Croatia MO (HMO) - geometry, 2017.3

In triangle $ABC$, $|AB| <|BC|$ holds. Point $I$ is the center of the circle inscribed in that triangle. Let $M$ be the midpoint of the side $AC$, and $N$ be the midpoint of the arc $AC$ of the circumcircle of that triangle containing point $B$. Prove that $\angle IMA = \angle INB$.

2010 Contests, 1

$ABC$ is an acute angle triangle such that $AB>AC$ and $\hat{BAC}=60^{\circ}$. Let's denote by $O$ the center of the circumscribed circle of the triangle and $H$ the intersection of altitudes of this triangle. Line $OH$ intersects $AB$ in point $P$ and $AC$ in point $Q$. Find the value of the ration $\frac{PO}{HQ}$.

2020 Yasinsky Geometry Olympiad, 6

Let $ABCD$ be a square, point $E$ be the midpoint of the side $BC$. The point $F$ belongs to the side $AB$, and $DE \perp EF$. The point $G$ lies inside the square, and $GF = FE$ and $GF \perp FE$. Prove that: a) $DE$ is the bisector of the $\angle FDC$ b) $FG$ is the bisector of the $\angle AFD$ c) the point $G$ is the center of the circle inscribed in the triangle $ADF$. (Ercole Suppa, Italy)

2018 Saudi Arabia IMO TST, 1

Let $ABC$ be an acute, non isosceles triangle with $M, N, P$ are midpoints of $BC, CA, AB$, respectively. Denote $d_1$ as the line passes through $M$ and perpendicular to the angle bisector of $\angle BAC$, similarly define for $d_2, d_3$. Suppose that $d_2 \cap d_3 = D$, $d_3 \cap d_1 = E,$ $d_1 \cap d_2 = F$. Let $I, H$ be the incenter and orthocenter of triangle $ABC$. Prove that the circumcenter of triangle $DEF$ is the midpoint of segment $IH$.

2021 China Girls Math Olympiad, 2

In acute triangle $ABC$ ($AB \neq AC$), $I$ is its incenter and $J$ is the $A$-excenter. $X, Y$ are on minor arcs $\widehat{AB}$ and $\widehat{AC}$ respectively such that $\angle{AXI}=\angle{AYJ}=90^{\circ}$. $K$ is on line $BC$ such that $KI=KJ$. Proof that line $AK$ bisects $\overline{XY}$.

2006 IMAR Test, 3

Consider the isosceles triangle $ABC$ with $AB = AC$, and $M$ the midpoint of $BC$. Find the locus of the points $P$ interior to the triangle, for which $\angle BPM+\angle CPA = \pi$.

2018 Romania Team Selection Tests, 2

Let $ABC$ be a triangle, let $I$ be its incenter, let $\Omega$ be its circumcircle, and let $\omega$ be the $A$- mixtilinear incircle. Let $D,E$ and $T$ be the intersections of $\omega$ and $AB,AC$ and $\Omega$, respectively, let the line $IT$ cross $\omega$ again at $P$, and let lines $PD$ and $PE$ cross the line $BC$ at $M$ and $N$ respectively. Prove that points $D,E,M,N$ are concyclic. What is the center of this circle?