This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2010 Korea - Final Round, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

2005 CentroAmerican, 3

Let $ABC$ be a triangle. $P$, $Q$ and $R$ are the points of contact of the incircle with sides $AB$, $BC$ and $CA$, respectively. Let $L$, $M$ and $N$ be the feet of the altitudes of the triangle $PQR$ from $R$, $P$ and $Q$, respectively. a) Show that the lines $AN$, $BL$ and $CM$ meet at a point. b) Prove that this points belongs to the line joining the orthocenter and the circumcenter of triangle $PQR$. [i]Aarón Ramírez, El Salvador[/i]

Ukrainian TYM Qualifying - geometry, XII.2

The figure shows a triangle, a circle circumscribed around it and the center of its inscribed circle. Using only one ruler (one-sided, without divisions), construct the center of the circumscribed circle.

2013 Balkan MO, 1

In a triangle $ABC$, the excircle $\omega_a$ opposite $A$ touches $AB$ at $P$ and $AC$ at $Q$, while the excircle $\omega_b$ opposite $B$ touches $BA$ at $M$ and $BC$ at $N$. Let $K$ be the projection of $C$ onto $MN$ and let $L$ be the projection of $C$ onto $PQ$. Show that the quadrilateral $MKLP$ is cyclic. ([i]Bulgaria[/i])

2011 Saudi Arabia IMO TST, 1

Tags: incenter , geometry
Let $I$ be the incenter of a triangle $ABC$ and let $A', B', C'$ be midpoints of sides $BC$, $CA$, $AB$, respectively. If $IA'= IB'= IC'$ , then prove that triangle $ABC$ is equilateral.

KoMaL A Problems 2019/2020, A. 774

Let $O$ be the circumcenter of triangle $ABC,$ and $D$ be an arbitrary point on the circumcircle of $ABC.$ Let points $X, Y$ and $Z$ be the orthogonal projections of point $D$ onto lines $OA, OB$ and $OC,$ respectively. Prove that the incenter of triangle $XYZ$ is on the Simson-Wallace line of triangle $ABC$ corresponding to point $D.$

1998 Korea - Final Round, 2

Let $I$ be the incenter of triangle $ABC$, $O_1$ a circle through $B$ tangent to $CI$, and $O_2$ a circle through $C$ tangent to $BI$. Prove that $O_1$,$O_2$ and the circumcircle of $ABC$ have a common point.

2017 Bulgaria EGMO TST, 2

Let $ABC$ be a triangle with incenter $I$. The line $AI$ intersects $BC$ and the circumcircle of $ABC$ at the points $T$ and $S$, respectively. Let $K$ and $L$ be the incenters of $SBT$ and $SCT$, respectively, $M$ be the midpoint of $BC$ and $P$ be the reflection of $I$ with respect to $KL$. a) Prove that $M$, $T$, $K$ and $L$ are concyclic. b) Determine the measure of $\angle BPC$.

2008 Tuymaada Olympiad, 3

Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$. [i]Author: L. Emelyanov[/i]

2013 Iran Team Selection Test, 1

In acute-angled triangle $ABC$, let $H$ be the foot of perpendicular from $A$ to $BC$ and also suppose that $J$ and $I$ are excenters oposite to the side $AH$ in triangles $ABH$ and $ACH$. If $P$ is the point that incircle touches $BC$, prove that $I,J,P,H$ are concyclic.

2020 Sharygin Geometry Olympiad, 24

Let $I$ be the incenter of a tetrahedron $ABCD$, and $J$ be the center of the exsphere touching the face $BCD$ containing three remaining faces (outside these faces). The segment $IJ$ meets the circumsphere of the tetrahedron at point $K$. Which of two segments $IJ$ and $JK$ is longer?

2012 Sharygin Geometry Olympiad, 6

Point $C_{1}$ of hypothenuse $AC$ of a right-angled triangle $ABC$ is such that $BC = CC_{1}$. Point $C_{2}$ on cathetus $AB$ is such that $AC_{2} = AC_{1}$; point $A_{2}$ is defined similarly. Find angle $AMC$, where $M$ is the midpoint of $A_{2}C_{2}$.

2006 Junior Balkan MO, 2

Tags: incenter , geometry
The triangle $ABC$ is isosceles with $AB=AC$, and $\angle{BAC}<60^{\circ}$. The points $D$ and $E$ are chosen on the side $AC$ such that, $EB=ED$, and $\angle{ABD}\equiv\angle{CBE}$. Denote by $O$ the intersection point between the internal bisectors of the angles $\angle{BDC}$ and $\angle{ACB}$. Compute $\angle{COD}$.

2005 APMO, 5

In a triangle $ABC$, points $M$ and $N$ are on sides $AB$ and $AC$, respectively, such that $MB = BC = CN$. Let $R$ and $r$ denote the circumradius and the inradius of the triangle $ABC$, respectively. Express the ratio $MN/BC$ in terms of $R$ and $r$.

2007 China Team Selection Test, 2

Let $ I$ be the incenter of triangle $ ABC.$ Let $ M,N$ be the midpoints of $ AB,AC,$ respectively. Points $ D,E$ lie on $ AB,AC$ respectively such that $ BD\equal{}CE\equal{}BC.$ The line perpendicular to $ IM$ through $ D$ intersects the line perpendicular to $ IN$ through $ E$ at $ P.$ Prove that $ AP\perp BC.$

2014 Korea National Olympiad, 3

Tags: incenter , geometry
$AB$ is a chord of $O$ and $AB$ is not a diameter of $O$. The tangent lines to $O$ at $A$ and $B$ meet at $C$. Let $M$ and $N$ be the midpoint of the segments $AC$ and $BC$, respectively. A circle passing through $C$ and tangent to $O$ meets line $MN$ at $P$ and $Q$. Prove that $\angle PCQ = \angle CAB$.

2014 China National Olympiad, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

2017 India IMO Training Camp, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2015 Bundeswettbewerb Mathematik Germany, 4

Let $ABC$ be a triangle, such that its incenter $I$ and circumcenter $U$ are distinct. For all points $X$ in the interior of the triangle let $d(X)$ be the sum of distances from $X$ to the three (possibly extended) sides of the triangle. Prove: If two distinct points $P,Q$ in the interior of the triangle $ABC$ satisfy $d(P)=d(Q)$, then $PQ$ is perpendicular to $UI$.

2013 Stanford Mathematics Tournament, 1

A circle of radius $2$ is inscribed in equilateral triangle $ABC$. The altitude from $A$ to $BC$ intersects the circle at a point $D$ not on $BC$. $BD$ intersects the circle at a point $E$ distinct from $D$. Find the length of $BE$.

2018 Sharygin Geometry Olympiad, 8

Let $I$ be the incenter of fixed triangle $ABC$, and $D$ be an arbitrary point on $BC$. The perpendicular bisector of $AD$ meets $BI,CI$ at $F$ and $E$ respectively. Find the locus of orthocenters of $\triangle IEF$ as $D$ varies.

2008 Tuymaada Olympiad, 4

Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$. [i]Author: L. Emelyanov[/i]

2022 Chile National Olympiad, 2

Let $ABC$ be a triangle such that $\angle CAB = 60^o$. Consider $D, E$ points on sides $AC$ and $AB$ respectively such that $BD$ bisects angle $\angle ABC$ , $CE$ bisects angle $\angle BCA$ and let $I$ be the intersection of them. Prove that $|ID| =|IE|$.

2004 Turkey Team Selection Test, 2

Let $\triangle ABC$ be an acute triangle, $O$ be its circumcenter, and $D$ be a point different that $A$ and $C$ on the smaller $AC$ arc of its circumcircle. Let $P$ be a point on $[AB]$ satisfying $\widehat{ADP} = \widehat {OBC}$ and $Q$ be a point on $[BC]$ satisfying $\widehat{CDQ}=\widehat {OBA}$. Show that $\widehat {DPQ} = \widehat {DOC}$.

2024 Yasinsky Geometry Olympiad, 2

Let $I$ be the incenter and $O$ be the circumcenter of triangle $ABC,$ where $\angle A < \angle B < \angle C.$ Points $P$ and $Q$ are such that $AIOP$ and $BIOQ$ are isosceles trapezoids ($AI \parallel OP,$ $BI \parallel OQ$). Prove that $CP = CQ.$ [i]Proposed by Volodymyr Brayman and Matthew Kurskyi[/i]