Found problems: 1389
2009 Cuba MO, 2
Let $I$ be the incenter of an acute riangle $ABC$. Let $C_A(A, AI)$ be the circle with center $A$ and radius $AI$. Circles $C_B(B, BI)$, $C_C(C, CI) $ are defined in an analogous way. Let $X, Y, Z$ be the intersection points of $C_B$ with $C_C$, $C_C$ with $C_A$, $C_A$ with $C_B$ respectively (different than $I$) . Show that if the radius of the circle that passes through the points $X, Y, Z$ is equal to the radius of the circle that passes through points $A$, $B$ and $C$ then triangle $ABC$ is equilateral.
2005 Irish Math Olympiad, 1
Let $ X$ be a point on the side $ AB$ of a triangle $ ABC$, different from $ A$ and $ B$. Let $ P$ and $ Q$ be the incenters of the triangles $ ACX$ and $ BCX$ respectively, and let $ M$ be the midpoint of $ PQ$. Prove that: $ MC>MX$.
JBMO Geometry Collection, 2016
A trapezoid $ABCD$ ($AB || CF$,$AB > CD$) is circumscribed.The incircle of the triangle $ABC$ touches the lines $AB$ and $AC$ at the points $M$ and $N$,respectively.Prove that the incenter of the trapezoid $ABCD$ lies on the line $MN$.
2009 Indonesia TST, 4
Given triangle $ ABC$ with $ AB>AC$. $ l$ is tangent line of the circumcircle of triangle $ ABC$ at $ A$. A circle with center $ A$ and radius $ AC$, intersect $ AB$ at $ D$ and $ l$ at $ E$ and $ F$. Prove that the lines $ DE$ and $ DF$ pass through the incenter and excenter of triangle $ ABC$.
2019 Korea Winter Program Practice Test, 1
Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that if $a,b,c$ are the length sides of a triangle, and $r$ is the radius of its incircle, then $f(a),f(b),f(c)$ also form a triangle where its radius of the incircle is $f(r)$.
2009 Indonesia TST, 2
Given a triangle $ \,ABC,\,$ let $ \,I\,$ be the center of its inscribed circle. The internal bisectors of the angles $ \,A,B,C\,$ meet the opposite sides in $ \,A^{\prime },B^{\prime },C^{\prime }\,$ respectively. Prove that
\[ \frac {1}{4} < \frac {AI\cdot BI\cdot CI}{AA^{\prime }\cdot BB^{\prime }\cdot CC^{\prime }} \leq \frac {8}{27}.
\]
2008 Czech and Slovak Olympiad III A, 2
Two disjoint circles $W_1(S_1,r_1)$ and $W_2(S_2,r_2)$ are given in the plane. Point $A$ is on circle $W_1$ and $AB,AC$ touch the circle $W_2$ at $B,C$ respectively. Find the loci of the incenter and orthocenter of triangle $ABC$.
2009 Romania Team Selection Test, 3
Let $ ABC$ be a non-isosceles triangle, in which $ X,Y,$ and $ Z$ are the tangency points of the incircle of center $ I$ with sides $ BC,CA$ and $ AB$ respectively. Denoting by $ O$ the circumcircle of $ \triangle{ABC}$, line $ OI$ meets $ BC$ at a point $ D.$ The perpendicular dropped from $ X$ to $ YZ$ intersects $ AD$ at $ E$. Prove that $ YZ$ is the perpendicular bisector of $ [EX]$.
1978 Czech and Slovak Olympiad III A, 5
Let $ABCS$ be an isosceles trapezoid. Denote $A',B',C',D'$ the incenters of triangles $BCD,CDA,$ $DAB,ABC,$ respectively. Show that $A',B',C',D'$ are vertices of a rectangle.
2011 Vietnam National Olympiad, 2
Let $\triangle ABC$ be a triangle such that $\angle C$ and $\angle B$ are acute. Let $D$ be a variable point on $BC$ such that $D\neq B, C$ and $AD$ is not perpendicular to $BC.$ Let $d$ be the line passing through $D$ and perpendicular to $BC.$ Assume $d \cap AB= E, d \cap AC =F.$ If $M, N, P$ are the incentres of $\triangle AEF, \triangle BDE,\triangle CDF.$ Prove that $A, M, N, P$ are concyclic if and only if $d$ passes through the incentre of $\triangle ABC.$
Ukraine Correspondence MO - geometry, 2021.7
Let $I$ be the center of a circle inscribed in triangle $ABC$, in which $\angle BAC = 60 ^o$ and $AB \ne AC$. The points $D$ and $E$ were marked on the rays $BA$ and $CA$ so that $BD = CE = BC$. Prove that the line $DE$ passes through the point $I$.
2011 Iran MO (3rd Round), 4
A variant triangle has fixed incircle and circumcircle. Prove that the radical center of its three excircles lies on a fixed circle and the circle's center is the midpoint of the line joining circumcenter and incenter.
[i]proposed by Masoud Nourbakhsh[/i]
2017 Baltic Way, 11
Let $H$ and $I$ be the orthocenter and incenter, respectively, of an acute-angled triangle $ABC$. The circumcircle of the triangle $BCI$ intersects the segment $AB$ at the point $P$ different from $B$. Let $K$ be the projection of $H$ onto $AI$ and $Q$ the reflection of $P$ in $K$. Show that $B$, $H$ and $Q$ are collinear.
[i]Proposed by Mads Christensen, Denmark[/i]
2014 JBMO TST - Turkey, 3
Let a line $\ell$ intersect the line $AB$ at $F$, the sides $AC$ and $BC$ of a triangle $ABC$ at $D$ and $E$, respectively and the internal bisector of the angle $BAC$ at $P$. Suppose that $F$ is at the opposite side of $A$ with respect to the line $BC$, $CD = CE$ and $P$ is in the interior the triangle $ABC$. Prove that
\[FB \cdot FA+CP^2 = CF^2 \iff AD \cdot BE = PD^2.\]
2015 Iran Team Selection Test, 2
In triangle $ABC$(with incenter $I$) let the line parallel to $BC$ from $A$ intersect circumcircle of $\triangle ABC$ at $A_1$ let $AI\cap BC=D$ and $E$ is tangency point of incircle with $BC$ let $ EA_1\cap \odot (\triangle ADE)=T$ prove that $AI=TI$.
2020 BMT Fall, 21
Let $\vartriangle ABC$ be a right triangle with legs $AB = 6$ and $AC = 8$. Let $I$ be the incenter of $\vartriangle ABC$ and $X$ be the other intersection of $AI$ with the circumcircle of $\vartriangle ABC$. Find $\overline{AI} \cdot \overline{IX}$.
MathLinks Contest 7th, 6.3
Let $ \Omega$ be the circumcircle of triangle $ ABC$. Let $ D$ be the point at which the incircle of $ ABC$ touches its side $ BC$. Let $ M$ be the point on $ \Omega$ such that the line $ AM$ is parallel to $ BC$. Also, let $ P$ be the point at which the circle tangent to the segments $ AB$ and $ AC$ and to the circle $ \Omega$ touches $ \Omega$. Prove that the points $ P$, $ D$, $ M$ are collinear.
2010 Bulgaria National Olympiad, 3
Let $k$ be the circumference of the triangle $ABC.$ The point $D$ is an arbitrary point on the segment $AB.$ Let $I$ and $J$ be the centers of the circles which are tangent to the side $AB,$ the segment $CD$ and the circle $k.$ We know that the points $A, B, I$ and $J$ are concyclic. The excircle of the triangle $ABC$ is tangent to the side $AB$ in the point $M.$ Prove that $M \equiv D.$
1992 Iran MO (2nd round), 1
Let $ABC$ be a right triangle with $\angle A=90^\circ.$ The bisectors of the angles $B$ and $C$ meet each other in $I$ and meet the sides $AC$ and $AB$ in $D$ and $E$, respectively. Prove that $S_{BCDE}=2S_{BIC},$ where $S$ is the area function.
[asy]
import graph; size(200); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen ttqqcc = rgb(0.2,0,0.8); pen qqwuqq = rgb(0,0.39,0); pen xdxdff = rgb(0.49,0.49,1); pen fftttt = rgb(1,0.2,0.2); pen ccccff = rgb(0.8,0.8,1);
draw((1.89,4.08)--(1.89,4.55)--(1.42,4.55)--(1.42,4.08)--cycle,qqwuqq); draw((1.42,4.08)--(7.42,4.1),ttqqcc+linewidth(1.6pt)); draw((1.4,10.08)--(1.42,4.08),ttqqcc+linewidth(1.6pt)); draw((1.4,10.08)--(7.42,4.1),ttqqcc+linewidth(1.6pt)); draw((1.4,10.08)--(4,4.09),fftttt+linewidth(1.2pt)); draw((7.42,4.1)--(1.41,6.24),fftttt+linewidth(1.2pt)); draw((1.41,6.24)--(4,4.09),ccccff+linetype("5pt 5pt"));
dot((1.42,4.08),ds); label("$A$", (1.1,3.66),NE*lsf); dot((7.42,4.1),ds); label("$B$", (7.15,3.75),NE*lsf); dot((1.4,10.08),ds); label("$C$", (1.49,10.22),NE*lsf); dot((4,4.09),ds); label("$E$", (3.96,3.46),NE*lsf); dot((1.41,6.24),ds); label("$D$", (0.9,6.17),NE*lsf); dot((3.37,5.54),ds); label("$I$", (3.45,5.69),NE*lsf); clip((-6.47,-7.49)--(-6.47,11.47)--(16.06,11.47)--(16.06,-7.49)--cycle); [/asy]
2018 Taiwan TST Round 2, 6
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
1994 National High School Mathematics League, 3
Circumcircle of $\triangle ABC$ is $\odot O$, incentre of $\triangle ABC$ is $I$. $\angle B=60^{\circ}.\angle A<\angle C$. Bisector of outer angle $\angle A$ intersects $\odot O$ at $E$. Prove:
[b](a)[/b] $IO=AE$.
[b](b)[/b] The radius of $\odot O$ is $R$, then $2R<IO+IA+IC<(1+\sqrt3)R$.
2018 Iran MO (3rd Round), 2
Two intersecting circles $\omega_1$ and $\omega_2$ are given.Lines $AB,CD$ are common tangents of $\omega_1,\omega_2$($A,C \in \omega_1 ,B,D \in \omega_2$)
Let $M$ be the midpoint of $AB$.Tangents through $M$ to $\omega_1$ and $\omega_2$(other than $AB$) intersect $CD$ at $X,Y$.Let $I$ be the incenter of $MXY$.Prove that $IC=ID$.
2010 APMO, 4
Let $ABC$ be an acute angled triangle satisfying the conditions $AB>BC$ and $AC>BC$. Denote by $O$ and $H$ the circumcentre and orthocentre, respectively, of the triangle $ABC.$ Suppose that the circumcircle of the triangle $AHC$ intersects the line $AB$ at $M$ different from $A$, and the circumcircle of the triangle $AHB$ intersects the line $AC$ at $N$ different from $A.$ Prove that the circumcentre of the triangle $MNH$ lies on the line $OH$.
2011 Junior Balkan Team Selection Tests - Romania, 4
The measure of the angle $\angle A$ of the acute triangle $ABC$ is $60^o$, and $HI = HB$, where $I$ and $H$ are the incenter and the orthocenter of the triangle $ABC$. Find the measure of the angle $\angle B$.
2022 Israel TST, 1
A triangle $ABC$ with orthocenter $H$ is given. $P$ is a variable point on line $BC$. The perpendicular to $BC$ through $P$ meets $BH$, $CH$ at $X$, $Y$ respectively. The line through $H$ parallel to $BC$ meets $AP$ at $Q$. Lines $QX$ and $QY$ meet $BC$ at $U$, $V$ respectively. Find the shape of the locus of the incenters of the triangles $QUV$.