This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

1990 IMO Longlists, 7

Let $S$ be the incenter of triangle $ABC$. $A_1, B_1, C_1$ are the intersections of $AS, BS, CS$ with the circumcircle of triangle $ABC$ respectively. Prove that $SA_1 + SB_1 + SC_1 \geq SA + SB + SC.$

2011 USA Team Selection Test, 1

In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC, CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and $Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$. Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HR$. [i]Proposed by Zuming Feng[/i]

2011 Paraguay Mathematical Olympiad, 5

In a rectangle triangle, let $I$ be its incenter and $G$ its geocenter. If $IG$ is parallel to one of the catheti and measures $10 cm$, find the lengths of the two catheti of the triangle.

2005 Bulgaria Team Selection Test, 5

Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$

2015 South East Mathematical Olympiad, 2

Tags: geometry , incenter
Let $I$ be the incenter of $\triangle ABC$ with $AB>AC$. Let $\Gamma$ be the circle with diameter $AI$. The circumcircle of $\triangle ABC$ intersects $\Gamma$ at points $A,D$, with point $D$ lying on $\overarc{AC}$ (not containing $B$). Let the line passing through $A$ and parallel to $BC$ intersect $\Gamma$ at points $A,E$. If $DI$ is the angle bisector of $\angle CDE$, and $\angle ABC = 33^{\circ}$, find the value of $\angle BAC$.

2024 Turkey Team Selection Test, 9

In a scalene triangle $ABC,$ $I$ is the incenter and $O$ is the circumcenter. The line $IO$ intersects the lines $BC,CA,AB$ at points $D,E,F$ respectively. Let $A_1$ be the intersection of $BE$ and $CF$. The points $B_1$ and $C_1$ are defined similarly. The incircle of $ABC$ is tangent to sides $BC,CA,AB$ at points $X,Y,Z$ respectively. Let the lines $XA_1, YB_1$ and $ZC_1$ intersect $IO$ at points $A_2,B_2,C_2$ respectively. Prove that the circles with diameters $AA_2,BB_2$ and $CC_2$ have a common point.

2002 Bulgaria National Olympiad, 4

Let $I$ be the incenter of a non-equilateral triangle $ABC$ and $T_1$, $T_2$, and $T_3$ be the tangency points of the incircle with the sides $BC$, $CA$ and $AB$, respectively. Prove that the orthocenter of triangle $T_1T_2T_3$ lies on the line $OI$, where $O$ is the circumcenter of triangle $ABC$. [i]Proposed by Georgi Ganchev[/i]

2024 Indonesia TST, G

Tags: incenter , geometry
Given an acute triangle $ABC$. The incircle with center $I$ touches $BC,CA,AB$ at $D,E,F$ respectively. Let $M,N$ be the midpoint of the minor arc of $AB$ and $AC$ respectively. Prove that $M,F,E,N$ are collinear if and only if $\angle BAC =90$$^{\circ}$

2010 Contests, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

Cono Sur Shortlist - geometry, 2012.G5

Tags: geometry , incenter
Let $ABC$ be an acute triangle, and let $H_A$, $H_B$, and $H_C$ be the feet of the altitudes relative to vertices $A$, $B$, and $C$, respectively. Define $I_A$, $I_B$, and $I_C$ as the incenters of triangles $AH_B H_C$, $BH_C H_A$, and $CH_A H_B$, respectively. Let $T_A$, $T_B$, and $T_C$ be the intersection of the incircle of triangle $ABC$ with $BC$, $CA$, and $AB$, respectively. Prove that the triangles $I_A I_B I_C$ and $T_A T_B T_C$ are congruent.

2021 China Team Selection Test, 1

A cyclic quadrilateral $ABCD$ has circumcircle $\Gamma$, and $AB+BC=AD+DC$. Let $E$ be the midpoint of arc $BCD$, and $F (\neq C)$ be the antipode of $A$ [i]wrt[/i] $\Gamma$. Let $I,J,K$ be the incenter of $\triangle ABC$, the $A$-excenter of $\triangle ABC$, the incenter of $\triangle BCD$, respectively. Suppose that a point $P$ satisfies $\triangle BIC \stackrel{+}{\sim} \triangle KPJ$. Prove that $EK$ and $PF$ intersect on $\Gamma.$

1996 All-Russian Olympiad, 6

In isosceles triangle $ABC$ ($AB = BC$) one draws the angle bisector $CD$. The perpendicular to $CD$ through the center of the circumcircle of $ABC$ intersects $BC$ at $E$. The parallel to $CD$ through $E$ meets $AB$ at $F$. Show that $BE$ = $FD$. [i]M. Sonkin[/i]

1998 USAMTS Problems, 4

Tags: geometry , incenter
As shown on the figure, square $PQRS$ is inscribed in right triangle $ABC$, whose right angle is at $C$, so that $S$ and $P$ are on sides $BC$ and $CA$, respectively, while $Q$ and $R$ are on side $AB$. Prove that $A B\geq3QR$ and determine when equality occurs. [asy] defaultpen(linewidth(0.7)+fontsize(10)); size(150); real a=8, b=6; real y=a/((a^2+b^2)/(a*b)+1), r=degrees((a,b))+180; pair A=b*dir(-r)*dir(90), B=a*dir(180)*dir(-r), C=origin, S=y*dir(-r)*dir(180), P=(y*b/a)*dir(90-r), Q=foot(P, A, B), R=foot(S, A, B); draw(A--B--C--cycle^^R--S--P--Q); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$S$", S, dir(point--S)); label("$R$", R, dir(270)); label("$Q$", Q, dir(270)); label("$P$", P, dir(point--P));[/asy]

2016 China Team Selection Test, 3

In cyclic quadrilateral $ABCD$, $AB>BC$, $AD>DC$, $I,J$ are the incenters of $\triangle ABC$,$\triangle ADC$ respectively. The circle with diameter $AC$ meets segment $IB$ at $X$, and the extension of $JD$ at $Y$. Prove that if the four points $B,I,J,D$ are concyclic, then $X,Y$ are the reflections of each other across $AC$.

Champions Tournament Seniors - geometry, 2008.2

Given a right triangle $ABC$ with $ \angle C=90^o$. On its hypotenuse $AB$ is arbitrary mark the point$ P$. The point $Q$ is symmetric to the point $P$ wrt $AC$. Let the lines $PQ$ and $BQ$ intersect $AC$ at points $O$ and $R$ respectively. Denote by $S$ the foot of the perpendicular from the point $R$ on the line $AB$ ($S \ne P$), and let $T$ be the intersection point of lines $OS$ and $BR$. Prove that $R$ is the center of the circle inscribed in the triangle $CST$.

2008 Iran Team Selection Test, 2

Suppose that $ I$ is incenter of triangle $ ABC$ and $ l'$ is a line tangent to the incircle. Let $ l$ be another line such that intersects $ AB,AC,BC$ respectively at $ C',B',A'$. We draw a tangent from $ A'$ to the incircle other than $ BC$, and this line intersects with $ l'$ at $ A_1$. $ B_1,C_1$ are similarly defined. Prove that $ AA_1,BB_1,CC_1$ are concurrent.

1985 Vietnam Team Selection Test, 2

Let $ ABC$ be a triangle with $ AB \equal{} AC$. A ray $ Ax$ is constructed in space such that the three planar angles of the trihedral angle $ ABCx$ at its vertex $ A$ are equal. If a point $ S$ moves on $ Ax$, find the locus of the incenter of triangle $ SBC$.

2021 Pan-American Girls' Math Olympiad, Problem 6

Let $ABC$ be a triangle with incenter $I$, and $A$-excenter $\Gamma$. Let $A_1,B_1,C_1$ be the points of tangency of $\Gamma$ with $BC,AC$ and $AB$, respectively. Suppose $IA_1, IB_1$ and $IC_1$ intersect $\Gamma$ for the second time at points $A_2,B_2,C_2$, respectively. $M$ is the midpoint of segment $AA_1$. If the intersection of $A_1B_1$ and $A_2B_2$ is $X$, and the intersection of $A_1C_1$ and $A_2C_2$ is $Y$, prove that $MX=MY$.

2023 Turkey Team Selection Test, 5

Let $ABC$ be a scalene triangle with circumcentre $O$, incentre $I$ and orthocentre $H$. Let the second intersection point of circle which passes through $O$ and tangent to $IH$ at point $I$, and the circle which passes through $H$ and tangent to $IO$ at point $I$ be $M$. Prove that $M$ lies on circumcircle of $ABC$.

2014 ELMO Shortlist, 11

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$. [i]Proposed by Yang Liu[/i]

2008 Postal Coaching, 1

In triangle $ABC,\angle B > \angle C, T$ is the midpoint of arc $BAC$ of the circumcicle of $ABC$, and $I$ is the incentre of $ABC$. Let $E$ be point such that $\angle AEI = 90^0$ and $AE$ is parallel to $BC$. If $TE$ intersects the circumcircle of $ABC$ at $P(\ne T)$ and $\angle B = \angle IPB$, determine $\angle A$.

2019 IOM, 3

In a non-equilateral triangle $ABC$ point $I$ is the incenter and point $O$ is the circumcenter. A line $s$ through $I$ is perpendicular to $IO$. Line $\ell$ symmetric to like $BC$ with respect to $s$ meets the segments $AB$ and $AC$ at points $K$ and $L$, respectively ($K$ and $L$ are different from $A$). Prove that the circumcenter of triangle $AKL$ lies on the line $IO$. [i]Dušan Djukić[/i]

2009 Harvard-MIT Mathematics Tournament, 9

Let $ABC$ be a triangle with $AB=16$ and $AC=5$. Suppose that the bisectors of angle $\angle ABC$ and $\angle BCA$ meet at a point $P$ in the triangle's interior. Given that $AP=4$, compute $BC$.

2006 Brazil National Olympiad, 1

Let $ABC$ be a triangle. The internal bisector of $\angle B$ meets $AC$ in $P$ and $I$ is the incenter of $ABC$. Prove that if $AP+AB = CB$, then $API$ is an isosceles triangle.

2016 Bosnia And Herzegovina - Regional Olympiad, 4

It is given circle with center in center of coordinate center with radius of $2016$. On circle and inside it are $540$ points with integer coordinates such that no three of them are collinear. Prove that there exist two triangles with vertices in given points such that they have same area