This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 320

2022 New Zealand MO, 4

Triangle $ABC$ is right-angled at $B$ and has incentre $I$. Points $D$, $E$ and $F$ are the points where the incircle of the triangle touches the sides $BC$, $AC$ and AB respectively. Lines $CI$ and $EF$ intersect at point $P$. Lines $DP$ and $AB$ intersect at point $Q$. Prove that $AQ = BF$.

2015 Belarus Team Selection Test, 3

The incircle of the triangle $ABC$ touches the sides $AC$ and $BC$ at points $P$ and $Q$ respectively. $N$ and $M$ are the midpoints of $AC$ and $BC$ respectively. Let $X=AM\cap BP, Y=BN\cap AQ$. Given $C,X,Y$ are collinear, prove that $CX$ is the angle bisector of the angle $ACB$. I. Gorodnin

2016 Dutch BxMO TST, 3

Let $\vartriangle ABC$ be a right-angled triangle with $\angle A = 90^o$ and circumcircle $\Gamma$. The inscribed circle is tangent to $BC$ in point $D$. Let $E$ be the midpoint of the arc $AB$ of $\Gamma$ not containing $C$ and let $F$ be the midpoint of the arc $AC$ of $\Gamma$ not containing $B$. (a) Prove that $\vartriangle ABC \sim \vartriangle DEF$. (b) Prove that $EF$ goes through the points of tangency of the incircle to $AB$ and $AC$.

Kyiv City MO Seniors 2003+ geometry, 2016.11.4.1

In the triangle $ABC$ the angle bisector $AD$ is drawn, $E$ is the point of tangency of the inscribed circle to the side $BC$, $I$ is the center of the inscribed circle $\Delta ABC$. The point ${{A} _ {1}}$ on the circumscribed circle $\Delta ABC$ is such that $A {{A} _ {1}} || BC$. Denote by $T$ - the second point of intersection of the line $E {{A} _ {1}}$ and the circumscribed circle $\Delta AED$. Prove that $IT = IA$.

2014 Belarus Team Selection Test, 1

Given triangle $ABC$ with $\angle A = a$. Let $AL$ be the bisector of the triangle $ABC$. Let the incircle of $\vartriangle ABC$ touch the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $X$ be the intersection point of the lines $AQ$ and $LP$. Prove that the lines $BX$ and $AL$ are perpendicular. (V. Karamzin)

1989 Tournament Of Towns, (214) 2

It is known that a circle can be inscribed in a trapezium $ABCD$. Prove that the two circles, constructed on its oblique sides as diameters, touch each other. (D. Fomin, Leningrad)

2009 Sharygin Geometry Olympiad, 3

Quadrilateral $ABCD$ is circumscribed, rays $BA$ and $CD$ intersect in point $E$, rays $BC$ and $AD$ intersect in point $F$. The incircle of the triangle formed by lines $AB, CD$ and the bisector of angle $B$, touches $AB$ in point $K$, and the incircle of the triangle formed by lines $AD, BC$ and the bisector of angle $B$, touches $BC$ in point $L$. Prove that lines $KL, AC$ and $EF$ concur. (I.Bogdanov)

2008 Germany Team Selection Test, 2

Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear. [i]Author: Waldemar Pompe, Poland[/i]

2009 Switzerland - Final Round, 5

Let $ABC$ be a triangle with $AB \ne AC$ and incenter $I$. The incircle touches $BC$ at $D$. Let $M$ be the midpoint of $BC$ . Show that the line $IM$ bisects segment $AD$ .

1993 Austrian-Polish Competition, 9

Point $P$ is taken on the extension of side $AB$ of an equilateral triangle $ABC$ so that $A$ is between $B$ and $P$. Denote by $a$ the side length of triangle $ABC$, by $r_1$ the inradius of triangle $PAC$, and by $r_2$ the exradius of triangle $PBC$ opposite $P$. Find the sum $r_1+r_2$ as a function in $a$.

2007 Estonia Team Selection Test, 2

Let $D$ be the foot of the altitude of triangle $ABC$ drawn from vertex $A$. Let $E$ and $F$ be points symmetric to $D$ w.r.t. lines $AB$ and $AC$, respectively. Let $R_1$ and $R_2$ be the circumradii of triangles $BDE$ and $CDF$, respectively, and let $r_1$ and $r_2$ be the inradii of the same triangles. Prove that $|S_{ABD} - S_{ACD}| > |R_1r_1 - R_2r_2|$

2022 Cono Sur, 2

Given is a triangle $ABC$ with incircle $\omega$, tangent to $BC, CA, AB$ at $D, E, F$. The perpendicular from $B$ to $BC$ meets $EF$ at $M$, and the perpendicular from $C$ to $BC$ meets $EF$ at $N$. Let $DM$ and $DN$ meet $\omega$ at $P$ and $Q$. Prove that $DP=DQ$.

2019 Novosibirsk Oral Olympiad in Geometry, 2

The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$. [img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]

2003 Kazakhstan National Olympiad, 4

Let the inscribed circle $ \omega $ of triangle $ ABC $ touch the side $ BC $ at the point $ A '$. Let $ AA '$ intersect $ \omega $ at $ P \neq A $. Let $ CP $ and $ BP $ intersect $ \omega $, respectively, at points $ N $ and $ M $ other than $ P $. Prove that $ AA ', BN $ and $ CM $ intersect at one point.

2012 Junior Balkan Team Selection Tests - Romania, 5

Let $ABC$ be a triangle and $A', B', C'$ the points in which its incircle touches the sides $BC, CA, AB$, respectively. We denote by $I$ the incenter and by $P$ its projection onto $AA' $. Let $M$ be the midpoint of the line segment $[A'B']$ and $N$ be the intersection point of the lines $MP$ and $AC$. Prove that $A'N $is parallel to $B'C'$

1988 Brazil National Olympiad, 4

Two triangles are circumscribed to a circumference. Show that if a circumference containing five of their vertices exists, then it will contain the sixth vertex too.

2015 All-Russian Olympiad, 7

A scalene triangle $ABC$ is inscribed within circle $\omega$. The tangent to the circle at point $C$ intersects line $AB$ at point $D$. Let $I$ be the center of the circle inscribed within $\triangle ABC$. Lines $AI$ and $BI$ intersect the bisector of $\angle CDB$ in points $Q$ and $P$, respectively. Let $M$ be the midpoint of $QP$. Prove that $MI$ passes through the middle of arc $ACB$ of circle $\omega$.

2013 BMT Spring, 14

Tags: geometry , incircle
Triangle $ABC$ has incircle $O$ that is tangent to $AC$ at $D$. Let $M$ be the midpoint of $AC$. $E$ lies on $BC$ so that line $AE$ is perpendicular to $BO$ extended. If $AC = 2013$, $AB = 2014$, $DM = 249$, find $CE$.

2001 Czech And Slovak Olympiad IIIA, 2

Given a triangle $PQX$ in the plane, with $PQ = 3, PX = 2.6$ and $QX = 3.8$. Construct a right-angled triangle $ABC$ such that the incircle of $\vartriangle ABC$ touches $AB$ at $P$ and $BC$ at $Q$, and point $X$ lies on the line $AC$.

2017 Oral Moscow Geometry Olympiad, 4

Prove that a circle constructed with the side $AB$ of a triangle $ABC$ as a diameter touches the inscribed circle of the triangle $ABC$ if and only if the side $AB$ is equal to the radius of the exircle on that side.

Novosibirsk Oral Geo Oly VIII, 2019.2

The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$. [img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]

2021 Spain Mathematical Olympiad, 6

Let $ABC$ be a triangle with $AB \neq AC$, let $I$ be its incenter, $\gamma$ its inscribed circle and $D$ the midpoint of $BC$. The tangent to $\gamma$ from $D$ different to $BC$ touches $\gamma$ in $E$. Prove that $AE$ and $DI$ are parallel.

2017 Latvia Baltic Way TST, 10

In an obtuse triangle $ABC$, for which $AC < AB$, the radius of the inscribed circle is $R$, the midpoint of its arc $BC$ (which does not contain $A$) is $S$. A point $T$ is placed on the extension of altitude $AD$ such that $D$ is between $ A$ and $T$ and $AT = 2R$. Prove that $\angle AST = 90^o$.

2023 Bulgaria EGMO TST, 6

Let $ABC$ be a triangle with incircle $\gamma$. The circle through $A$ and $B$ tangent to $\gamma$ touches it at $C_2$ and the common tangent at $C_2$ intersects $AB$ at $C_1$. Define the points $A_1$, $B_1$, $A_2$, $B_2$ analogously. Prove that: a) the points $A_1$, $B_1$, $C_1$ are collinear; b) the lines $AA_2$, $BB_2$, $CC_2$ are concurrent.

2016 Croatia Team Selection Test, Problem 3

Let $P$ be a point inside a triangle $ABC$ such that $$ \frac{AP + BP}{AB} = \frac{BP + CP}{BC} = \frac{CP + AP}{CA} .$$ Lines $AP$, $BP$, $CP$ intersect the circumcircle of triangle $ABC$ again in $A'$, $B'$, $C'$. Prove that the triangles $ABC$ and $A'B'C'$ have a common incircle.