This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 320

2019 Novosibirsk Oral Olympiad in Geometry, 2

The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$. [img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]

2015 Indonesia MO Shortlist, G3

Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.

1998 Singapore Team Selection Test, 1

Let $I$ be the centre of the inscribed circle of the non-isosceles triangle $ABC$, and let the circle touch the sides $BC, CA, AB$ at the points $A_1, B_1, C_1$ respectively. Prove that the centres of the circumcircles of $\vartriangle AIA_1,\vartriangle BIB_1$ and $\vartriangle CIC_1$ are collinear.

2010 Balkan MO Shortlist, G3

The incircle of a triangle $A_0B_0C_0$ touches the sides $B_0C_0,C_0A_0,A_0B_0$ at the points $A,B,C$ respectively, and the incircle of the triangle $ABC$ with incenter $ I$ touches the sides $BC,CA, AB$ at the points $A_1, B_1,C_1$, respectively. Let $\sigma(ABC)$ and $\sigma(A_1B_1C)$ be the areas of the triangles $ABC$ and $A_1B_1C$ respectively. Show that if $\sigma(ABC) = 2 \sigma(A_1B_1C)$ , then the lines $AA_0, BB_0,IC_1$ pass through a common point .

2012 Bosnia And Herzegovina - Regional Olympiad, 4

Let $S$ be an incenter of triangle $ABC$ and let incircle touch sides $AC$ and $AB$ in points $P$ and $Q$, respectively. Lines $BS$ and $CS$ intersect line $PQ$ in points $M$ and $N$, respectively. Prove that points $M$, $N$, $B$ and $C$ are concyclic

2018 IOM, 6

Tags: geometry , incircle
The incircle of a triangle $ABC$ touches the sides $BC$ and $AC$ at points $D$ and $E$, respectively. Suppose $P$ is the point on the shorter arc $DE$ of the incircle such that $\angle APE = \angle DPB$. The segments $AP$ and $BP$ meet the segment $DE$ at points $K$ and $L$, respectively. Prove that $2KL = DE$. [i]Dušan Djukić[/i]

Kvant 2023, M2767

It is easy to prove that in a right triangle the sum of the radii of the incircle and three excircles is equal to the perimeter. Prove that the opposite statement is also true. [i]Proposed by I. Weinstein[/i]

1997 Bosnia and Herzegovina Team Selection Test, 4

$a)$ In triangle $ABC$ let $A_1$, $B_1$ and $C_1$ be touching points of incircle $ABC$ with $BA$, $CA$ and $AB$, respectively. Let $l_1$, $l_2$ and $l_3$ be lenghts of arcs $ B_1C_1$, $A_1C_1$, $B_1A_1$ of incircle $ABC$, respectively, which does not contain points $A_1$, $B_1$ and $C_1$, respectively. Does the following inequality hold: $$ \frac{a}{l_1}+\frac{b}{l_2}+\frac{c}{l_3} \geq \frac{9\sqrt{3}}{\pi}$$ $b)$ Tetrahedron $ABCD$ has three pairs of equal opposing sides. Find length of height of tetrahedron in function od lengths of sides

2016 Federal Competition For Advanced Students, P2, 2

Let $ABC$ be a triangle. Its incircle meets the sides $BC, CA$ and $AB$ in the points $D, E$ and $F$, respectively. Let $P$ denote the intersection point of $ED$ and the line perpendicular to $EF$ and passing through $F$, and similarly let $Q$ denote the intersection point of $EF$ and the line perpendicular to $ED$ and passing through $D$. Prove that $B$ is the mid-point of the segment $PQ$. Proposed by Karl Czakler

2015 JBMO Shortlist, 5

Let $ABC$ be an acute triangle with ${AB\neq AC}$. The incircle ${\omega}$ of the triangle touches the sides ${BC, CA}$ and ${AB}$ at ${D, E}$ and ${F}$, respectively. The perpendicular line erected at ${C}$ onto ${BC}$ meets ${EF}$ at ${M}$, and similarly the perpendicular line erected at ${B}$ onto ${BC}$ meets ${EF}$ at ${N}$. The line ${DM}$ meets ${\omega}$ again in ${P}$, and the line ${DN}$ meets ${\omega}$ again at ${Q}$. Prove that ${DP=DQ}$. Ruben Dario & Leo Giugiuc (Romania)

2000 Czech and Slovak Match, 5

Let $ABCD$ be an isosceles trapezoid with bases $AB$ and $CD$. The incircle of the triangle $BCD$ touches $CD$ at $E$. Point $F$ is chosen on the bisector of the angle $DAC$ such that the lines $EF$ and $CD$ are perpendicular. The circumcircle of the triangle $ACF$ intersects the line $CD$ again at $G$. Prove that the triangle $AFG$ is isosceles.

2014 Costa Rica - Final Round, 5

Let $ABC$ be a triangle, with $A'$, $B'$, and $C'$ the points of tangency of the incircle with $BC$, $CA$, and $AB$ respectively. Let $X$ be the intersection of the excircle with respect to $A$ with $AB$, and $M$ the midpoint of $BC$. Let $D$ be the intersection of $XM$ with $B'C'$. Show that $\angle C'A'D' = 90^o$.

1992 IMO Longlists, 12

Given a triangle $ABC$ such that the circumcenter is in the interior of the incircle, prove that the triangle $ABC$ is acute-angled.

1979 All Soviet Union Mathematical Olympiad, 282

The convex quadrangle is divided by its diagonals onto four triangles. The circles inscribed in those triangles are equal. Prove that the given quadrangle is a diamond.

2001 Estonia National Olympiad, 3

A circle with center $I$ and radius $r$ is inscribed in a triangle $ABC$ with a right angle at $C$. Rays $AI$ and $CI$ meet the opposite sides at $D$ and $E$ respectively. Prove that $\frac{1}{AE}+\frac{1}{BD}=\frac{1}{r}$

2013 Saudi Arabia IMO TST, 1

Triangle $ABC$ is inscribed in circle $\omega$. Point $P$ lies inside triangle $ABC$.Lines $AP,BP$ and $CP$ intersect $\omega$ again at points $A_1$, $B_1$ and $C_1$ (other than $A, B, C$), respectively. The tangent lines to $\omega$ at $A_1$ and $B_1$ intersect at $C_2$.The tangent lines to $\omega$ at $B_1$ and $C_1$ intersect at $A_2$. The tangent lines to $\omega$ at $C_1$ and $A_1$ intersect at $B_2$. Prove that the lines $AA_2,BB_2$ and $CC_2$ are concurrent.

2013 Saudi Arabia Pre-TST, 3.4

$\vartriangle ABC$ is a triangle with $AB < BC, \Gamma$ its circumcircle, $K$ the midpoint of the minor arc $CA$ of the circle $C$ and $T$ a point on $\Gamma$ such that $KT$ is perpendicular to $BC$. If $A',B'$ are the intouch points of the incircle of $\vartriangle ABC$ with the sides $BC,AC$, prove that the lines $AT,BK,A'B'$ are concurrent.

2014 Thailand TSTST, 2

In a triangle $ABC$, the incircle with incenter $I$ is tangent to $BC$ at $A_1, CA$ at $B_1$, and $AB$ at $C_1$. Denote the intersection of $AA_1$ and $BB_1$ by $G$, the intersection of $AC$ and $A_1C_1$ by $X$, and the intersection of $BC$ and $B_1C_1$ by $Y$ . Prove that $IG \perp XY$ .

2022 European Mathematical Cup, 3

Let $ABC$ be an acute-angled triangle with $AC > BC$, with incircle $\tau$ centered at $I$ which touches $BC$ and $AC$ at points $D$ and $E$, respectively. The point $M$ on $\tau$ is such that $BM \parallel DE$ and $M$ and $B$ lie on the same halfplane with respect to the angle bisector of $\angle ACB$. Let $F$ and $H$ be the intersections of $\tau$ with $BM$ and $CM$ different from $M$, respectively. Let $J$ be a point on the line $AC$ such that $JM \parallel EH$. Let $K$ be the intersection of $JF$ and $\tau$ different from $F$. Prove that $ME \parallel KH$.

2012 Bundeswettbewerb Mathematik, 3

The incircle of the triangle $ABC$ touches the sides $BC, CA$ and $AB$ in points $A_1, B_1$ and $C_1$ respectively. $C_1D$ is a diameter of the incircle. Finally, let $E$ be the intersection of the lines $B_1C_1$ and $A_1D$. Prove that the segments $CE$ and $CB_1$ have equal length.

2017 Peru IMO TST, 3

The inscribed circle of the triangle $ABC$ is tangent to the sides $BC, AC$ and $AB$ at points $D, E$ and $F$, respectively. Let $M$ be the midpoint of $EF$. The circle circumscribed around the triangle $DMF$ intersects line $AB$ at $L$, the circle circumscribed around the triangle $DME$ intersects the line $AC$ at $K$. Prove that the circle circumscribed around the triangle $AKL$ is tangent to the line $BC$.

2019 Oral Moscow Geometry Olympiad, 1

In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$

2001 Estonia Team Selection Test, 6

Let $C_1$ and $C_2$ be the incircle and the circumcircle of the triangle $ABC$, respectively. Prove that, for any point $A'$ on $C_2$, there exist points $B'$ and $C'$ such that $C_1$ and $C_2$ are the incircle and the circumcircle of triangle $A'B'C'$, respectively.

Kyiv City MO Seniors 2003+ geometry, 2007.10.3

The points $ P, Q$ are given on the plane, which are the points of intersection of the angle bisector $AL$ of some triangle $ABC$ with an inscribed circle, and the point $W$ is the intersection of the angle bisector $AL$ with a circumscribed circle other than the vertex $A$. a) Find the geometric locus of the possible location of the vertex $A$ of the triangle $ABC$. b) Find the geometric locus of the possible location of the vertex $B$ of the triangle $ABC$.

2013 North Korea Team Selection Test, 5

The incircle $ \omega $ of a quadrilateral $ ABCD $ touches $ AB, BC, CD, DA $ at $ E, F, G, H $, respectively. Choose an arbitrary point $ X$ on the segment $ AC $ inside $ \omega $. The segments $ XB, XD $ meet $ \omega $ at $ I, J $ respectively. Prove that $ FJ, IG, AC $ are concurrent.