This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1986 IMO Longlists, 78

If $T$ and $T_1$ are two triangles with angles $x, y, z$ and $x_1, y_1, z_1$, respectively, prove the inequality \[\frac{\cos x_1}{\sin x}+\frac{\cos y_1}{\sin y}+\frac{\cos z_1}{\sin z} \leq \cot x+\cot y+\cot z.\]

2004 India IMO Training Camp, 1

Prove that in any triangle $ABC$, \[ 0 < \cot { \left( \frac{A}{4} \right)} - \tan{ \left( \frac{B}{4} \right) } - \tan{ \left( \frac{C}{4} \right) } - 1 < 2 \cot { \left( \frac{A}{2} \right) }. \]

2022 VJIMC, 1

Determine whether there exists a differentiable function $f:[0,1]\to\mathbb R$ such that $$f(0)=f(1)=1,\qquad|f'(x)|\le2\text{ for all }x\in[0,1]\qquad\text{and}\qquad\left|\int^1_0f(x)dx\right|\le\frac12.$$

1985 IMO Longlists, 24

Let $d \geq 1$ be an integer that is not the square of an integer. Prove that for every integer $n \geq 1,$ \[(n \sqrt d +1) \cdot | \sin(n \pi \sqrt d )| \geq 1\]

2013 IMC, 1

Let $\displaystyle{A}$ and $\displaystyle{B}$ be real symmetric matrixes with all eigenvalues strictly greater than $\displaystyle{1}$. Let $\displaystyle{\lambda }$ be a real eigenvalue of matrix $\displaystyle{{\rm A}{\rm B}}$. Prove that $\displaystyle{\left| \lambda \right| > 1}$. [i]Proposed by Pavel Kozhevnikov, MIPT, Moscow.[/i]

1951 Moscow Mathematical Olympiad, 188

Prove that $x^{12} - x^9 + x^4 - x + 1 > 0$ for all $x$.

2018 Cyprus IMO TST, 3

Tags: inequalities
Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression $$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$ obtains its minimum value.

2019 Junior Balkan Team Selection Tests - Romania, 2

If $x, y$ and $z$ are real numbers such that $x^2 + y^2 + z^2 = 2$, prove that $x + y + z \le xyz + 2$.

2011 Albania National Olympiad, 3

In a convex quadrilateral $ABCD$ ,$\angle ABC$ and $\angle BCD$ are $\geq 120^o$. Prove that $|AC|$ + $|BD| \geq |AB|+|BC|+|CD|$. (With $|XY|$ we understand the length of the segment $XY$).

2011 China Team Selection Test, 1

Tags: inequalities
Let $n\geq 3$ be an integer. Find the largest real number $M$ such that for any positive real numbers $x_1,x_2,\cdots,x_n$, there exists an arrangement $y_1,y_2,\cdots,y_n$ of real numbers satisfying \[\sum_{i=1}^n \frac{y_i^2}{y_{i+1}^2-y_{i+1}y_{i+2}+y_{i+2}^2}\geq M,\] where $y_{n+1}=y_1,y_{n+2}=y_2$.

2017 Hanoi Open Mathematics Competitions, 11

Let $ABC$ be an equilateral triangle, and let $P$ stand for an arbitrary point inside the triangle. Is it true that $| \angle PAB - \angle PAC| \ge | \angle PBC - \angle PCB|$ ?

2014 Junior Balkan Team Selection Tests - Romania, 2

Determine all real numbers $x, y, z \in (0, 1)$ that satisfy simultaneously the conditions: $(x^2 + y^2)\sqrt{1- z^2}\ge z$ $(y^2 + z^2)\sqrt{1- x^2}\ge x$ $(z^2 + x^2)\sqrt{1- y^2}\ge y$

2019 LIMIT Category B, Problem 12

Tags: inequalities
The system of inequalities $$a-b^2\ge\frac14$$$$b-c^2\ge\frac14$$$$c-d^2\ge\frac14$$$$d-a^2\ge\frac14$$where $a,b,c,d$ are real numbers has $\textbf{(A)}~\text{no solutions}$ $\textbf{(B)}~\text{exactly one solution}$ $\textbf{(C)}~\text{exactly two solutions}$ $\textbf{(D)}~\text{infinitely many solutions}$

2007 Today's Calculation Of Integral, 232

For $ f(x)\equal{}1\minus{}\sin x$, let $ g(x)\equal{}\int_0^x (x\minus{}t)f(t)\ dt.$ Show that $ g(x\plus{}y)\plus{}g(x\minus{}y)\geq 2g(x)$ for any real numbers $ x,\ y.$

2014 Estonia Team Selection Test, 3

Three line segments, all of length $1$, form a connected figure in the plane. Any two different line segments can intersect only at their endpoints. Find the maximum area of the convex hull of the figure.

2007 Middle European Mathematical Olympiad, 1

Tags: inequalities
Let $ a,b,c,d$ be real numbers which satisfy $ \frac{1}{2}\leq a,b,c,d\leq 2$ and $ abcd\equal{}1$. Find the maximum value of \[ \left(a\plus{}\frac{1}{b}\right)\left(b\plus{}\frac{1}{c}\right)\left(c\plus{}\frac{1}{d}\right)\left(d\plus{}\frac{1}{a}\right).\]

1999 Romania Team Selection Test, 5

Tags: inequalities
Let $x_1,x_2,\ldots,x_n$ be distinct positive integers. Prove that \[ x_1^2+x_2^2 + \cdots + x_n^2 \geq \frac {2n+1}3 ( x_1+x_2+\cdots + x_n). \] [i]Laurentiu Panaitopol[/i]

2011 IFYM, Sozopol, 3

If $x$ and $y$ are real numbers, determine the greatest possible value of the expression $\frac{(x+1)(y+1)(xy+1)}{(x^2+1)(y^2+1)}$.

1965 Kurschak Competition, 1

What integers $a, b, c$ satisfy $a^2 + b^2 + c^2 + 3 < ab + 3b + 2c$ ?

2008 China Northern MO, 6

Let $a, b, c$ be side lengths of a right triangle and $c$ be the length of the hypotenuse .Find the minimum value of $\frac{a^3+b^3+c^3}{abc}$.

2019 Jozsef Wildt International Math Competition, W. 69

Denote $\overline{w_a}, \overline{w_b}, \overline{w_c}$ the external angle-bisectors in triangle $ABC$, prove that $$\sum \limits_{cyc} \frac{1}{w_a}\leq \sqrt{\frac{(s^2 - r^2 - 4Rr)(8R^2 - s^2 - r^2 - 2Rr)}{8s^2R^2r}}$$

1980 Dutch Mathematical Olympiad, 1

$f(x) = x^3-ax+1$ , $a \in R$ has three different zeros in $R$. Prove that for the zero $x_o$ with the smallest absolute value holds: $\frac{1}{a}< x_0 < \frac{2}{a}$

2008 Putnam, B3

What is the largest possible radius of a circle contained in a 4-dimensional hypercube of side length 1?

2014 Contests, 1

Tags: inequalities
Suppose $x$, $y$, $z$ are positive numbers such that $x+y+z=1$. Prove that \[ \frac{(1+xy+yz+zx)(1+3x^3 + 3y^3 + 3z^3)}{9(x+y)(y+z)(z+x)} \ge \left( \frac{x \sqrt{1+x} }{\sqrt[4]{3+9x^2}} + \frac{y \sqrt{1+y} }{\sqrt[4]{3+9y^2}} + \frac{z \sqrt{1+z}}{\sqrt[4]{3+9z^2}} \right)^2. \]

2019 China Team Selection Test, 5

Tags: inequalities
Find all integer $n$ such that the following property holds: for any positive real numbers $a,b,c,x,y,z$, with $max(a,b,c,x,y,z)=a$ , $a+b+c=x+y+z$ and $abc=xyz$, the inequality $$a^n+b^n+c^n \ge x^n+y^n+z^n$$ holds.