This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2025 Malaysian IMO Team Selection Test, 3

Let $\mathbb R$ be the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ where there exist a real constant $c\ge 0$ such that $$x^3+y^2f(y)+zf(z^2)\ge cf(xyz)$$ holds for all reals $x$, $y$, $z$ that satisfy $x+y+z\ge 0$. [i]Proposed by Ivan Chan Kai Chin[/i]

2011 Romania Team Selection Test, 2

Given real numbers $x,y,z$ such that $x+y+z=0$, show that \[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\] When does equality hold?

2019 International Zhautykov OIympiad, 2

Find the biggest real number $C$, such that for every different positive real numbers $a_1,a_2...a_{2019}$ that satisfy inequality : $\frac{a_1}{|a_2-a_3|} + \frac{a_2}{|a_3-a_4|} + ... + \frac{a_{2019}}{|a_1-a_2|} > C$

2007 China Northern MO, 4

The inradius of triangle $ ABC$ is $ 1$ and the side lengths of $ ABC$ are all integers. Prove that triangle $ ABC$ is right-angled.

1971 Czech and Slovak Olympiad III A, 1

Let $a,b,c$ real numbers. Show that there are non-negative $x,y,z,xyz\neq0$ such that \begin{align*} cy-bz &\ge 0, \\ az-cx &\ge 0, \\ bx-ay &\ge 0. \end{align*}

2006 Moldova Team Selection Test, 1

Let the point $P$ in the interior of the triangle $ABC$. $(AP, (BP, (CP$ intersect the circumcircle of $ABC$ at $A_{1}, B_{1}, C_{1}$. Prove that the maximal value of the sum of the areas $A_{1}BC$, $B_{1}AC$, $C_{1}AB$ is $p(R-r)$, where $p, r, R$ are the usual notations for the triangle $ABC$.

2010 Belarus Team Selection Test, 3.1

Let $I$ be an incenter of a triangle $ABC, A_1,B_1,C_1$ be intersection points of the circumcircle of the triangle $ABC$ and the lines $AI, BI, Cl$ respectively. Prove that a) $\frac{AI}{IA_1}+ \frac{BI}{IB_1}+ \frac{CI}{IC_1}\ge 3$ b) $AI \cdot BI \cdot CI \le I_1A_1\cdot I_2B_1 \cdot I_1C_1$ (D. Pirshtuk)

1973 AMC 12/AHSME, 22

The set of all real solutions of the inequality \[ |x \minus{} 1| \plus{} |x \plus{} 2| < 3\] is $ \textbf{(A)}\ x \in ( \minus{} 3,2) \qquad \textbf{(B)}\ x \in ( \minus{} 1,2) \qquad \textbf{(C)}\ x \in ( \minus{} 2,1) \qquad$ $ \textbf{(D)}\ x \in \left( \minus{} \frac32,\frac72\right) \qquad \textbf{(E)}\ \O \text{ (empty})$ Note: I updated the notation on this problem.

2008 Czech and Slovak Olympiad III A, 3

Find the greatest value of $p$ and the smallest value of $q$ such that for any triangle in the plane, the inequality \[p<\frac{a+m}{b+n}<q\] holds, where $a,b$ are it's two sides and $m,n$ their corresponding medians.

2008 Germany Team Selection Test, 1

Show that there is a digit unequal to 2 in the decimal represesentation of $ \sqrt [3]{3}$ between the $ 1000000$-th und $ 3141592$-th position after decimal point.

2001 India IMO Training Camp, 1

Tags: inequalities
Let $x$ , $y$ , $z>0$. Prove that if $xyz\geq xy+yz+zx$, then $xyz \geq 3(x+ y+z)$.

2021-IMOC, A3

For any real numbers $x, y, z$ with $xyz + x + y + z = 4, $show that $$(yz + 6)^2 + (zx + 6)^2 + (xy + 6)^2 \geq 8 (xyz + 5).$$

2018 IFYM, Sozopol, 4

Find all real numbers $k$ for which the inequality $(1+t)^k (1-t)^{1-k} \leq 1$ is true for every real number $t \in (-1, 1)$.

2008 Harvard-MIT Mathematics Tournament, 10

Let $ ABC$ be an equilateral triangle with side length 2, and let $ \Gamma$ be a circle with radius $ \frac {1}{2}$ centered at the center of the equilateral triangle. Determine the length of the shortest path that starts somewhere on $ \Gamma$, visits all three sides of $ ABC$, and ends somewhere on $ \Gamma$ (not necessarily at the starting point). Express your answer in the form of $ \sqrt p \minus{} q$, where $ p$ and $ q$ are rational numbers written as reduced fractions.

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

2012 Today's Calculation Of Integral, 838

Prove that : $\frac{e-1}{e}<\int_0^1 e^{-x^2}dx<\frac{\pi}{4}.$

2004 Thailand Mathematical Olympiad, 19

Tags: inequalities , algebra , sum , max
Find positive reals $a, b, c$ which maximizes the value of $a+ 2b+ 3c$ subject to the constraint that $9a^2 + 4b^2 + c^2 = 91$

1991 India National Olympiad, 4

Tags: inequalities
Let $a,b,c$ be real numbers with $0 < a< 1$, $0 < b < 1$, $0 < c < 1$, and $a+b + c = 2$. Prove that $\dfrac{a}{1-a} \cdot \dfrac{b}{1-b} \cdot \dfrac{c}{1-c} \geq 8$.

2009 Indonesia TST, 1

Tags: inequalities
Let $ x_1,x_2,\dots,x_n$ be positive real numbers. Let $ m\equal{}\min\{x_1,x_2,\dots,x_n\}$, $ M\equal{}\max\{x_1,x_2,\dots,x_n\}$, $ A\equal{}\frac{1}{n}(x_1\plus{}x_2\plus{}\dots\plus{}x_n)$, and $ G\equal{}\sqrt[n]{x_1x_2 \dots x_n}$. Prove that \[ A\minus{}G \ge \frac{1}{n}(\sqrt{M}\minus{}\sqrt{m})^2.\]

2010 German National Olympiad, 2

Tags: inequalities
Let $a,b,c$ be pairwise distinct real numbers. Show that \[ (\frac{2a-b}{a-b})^2+(\frac{2b-c}{b-c})^2+(\frac{2c-a}{c-a})^2 \ge 5. \]

1986 All Soviet Union Mathematical Olympiad, 427

Prove that the following inequality holds for all positive $\{a_i\}$: $$\frac{1}{a_1} + \frac{2}{a_1+a_2} + ... +\frac{ n}{a_1+...+a_n} < 4\left(\frac{1}{a_1} + ... + \frac{1}{a_n}\right)$$

2008 Estonia Team Selection Test, 3

Let $ n$ be a positive integer, and let $ x$ and $ y$ be a positive real number such that $ x^n \plus{} y^n \equal{} 1.$ Prove that \[ \left(\sum^n_{k \equal{} 1} \frac {1 \plus{} x^{2k}}{1 \plus{} x^{4k}} \right) \cdot \left( \sum^n_{k \equal{} 1} \frac {1 \plus{} y^{2k}}{1 \plus{} y^{4k}} \right) < \frac {1}{(1 \minus{} x) \cdot (1 \minus{} y)}. \] [i]Author: Juhan Aru, Estonia[/i]

2013 JBMO TST - Turkey, 4

For all positive real numbers $a, b, c$ satisfying $a+b+c=1$, prove that \[ \frac{a^4+5b^4}{a(a+2b)} + \frac{b^4+5c^4}{b(b+2c)} + \frac{c^4+5a^4}{c(c+2a)} \geq 1- ab-bc-ca \]

1963 Miklós Schweitzer, 6

Show that if $ f(x)$ is a real-valued, continuous function on the half-line $ 0\leq x < \infty$, and \[ \int_0^{\infty} f^2(x)dx <\infty\] then the function \[ g(x)\equal{}f(x)\minus{}2e^{\minus{}x}\int_0^x e^tf(t)dt\] satisfies \[ \int _0^{\infty}g^2(x)dx\equal{}\int_0^{\infty}f^2(x)dx.\] [B. Szokefalvi-Nagy]

1996 Moldova Team Selection Test, 9

Let $x_1,x_2,...,x_n \in [0;1]$ prove that $x_1(1-x_2)+x_2(1-x_3)+...+x_{n-1}(1-x_n)+x_n(1-x_1) \leq [\frac{n}{2}]$