This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 325

2012 JBMO TST - Turkey, 1

Let $a, b, c$ be the side-lengths of a triangle, $r$ be the inradius and $r_a, r_b, r_c$ be the corresponding exradius. Show that \[ \frac{a+b+c}{\sqrt{a^2+b^2+c^2}} \leq 2 \cdot \frac{\sqrt{{r_a}^2+{r_b}^2+{r_c}^2}}{r_a+r_b+r_c-3r} \]

2017 India National Olympiad, 1

In the given figure, $ABCD$ is a square sheet of paper. It is folded along $EF$ such that $A$ goes to a point $A'$ different from $B$ and $C$, on the side $BC$ and $D$ goes to $D'$. The line $A'D'$ cuts $CD$ in $G$. Show that the inradius of the triangle $GCA'$ is the sum of the inradii of the triangles $GD'F$ and $A'BE$. [asy] size(5cm); pair A=(0,0),B=(1,0),C=(1,1),D=(0,1),Ap=(1,0.333),Dp,Ee,F,G; Ee=extension(A,B,(A+Ap)/2,bisectorpoint(A,Ap)); F=extension(C,D,(A+Ap)/2,bisectorpoint(A,Ap)); Dp=reflect(Ee,F)*D; G=extension(C,D,Ap,Dp); D(MP("A",A,W)--MP("E",Ee,S)--MP("B",B,E)--MP("A^{\prime}",Ap,E)--MP("C",C,E)--MP("G",G,NE)--MP("D^{\prime}",Dp,N)--MP("F",F,NNW)--MP("D",D,W)--cycle,black); draw(Ee--Ap--G--F); dot(A);dot(B);dot(C);dot(D);dot(Ap);dot(Dp);dot(Ee);dot(F);dot(G); draw(Ee--F,dashed); [/asy]

2010 Mediterranean Mathematics Olympiad, 3

Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[ R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\] where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$

1960 IMO Shortlist, 6

Consider a cone of revolution with an inscribed sphere tangent to the base of the cone. A cylinder is circumscribed about this sphere so that one of its bases lies in the base of the cone. let $V_1$ be the volume of the cone and $V_2$ be the volume of the cylinder. a) Prove that $V_1 \neq V_2$; b) Find the smallest number $k$ for which $V_1=kV_2$; for this case, construct the angle subtended by a diamter of the base of the cone at the vertex of the cone.

1989 IMO Longlists, 28

Tags: geometry , inradius
In a triangle $ ABC$ for which $ 6(a\plus{}b\plus{}c)r^2 \equal{} abc$ holds and where $ r$ denotes the inradius of $ ABC,$ we consider a point M on the inscribed circle and the projections $ D,E, F$ of $ M$ on the sides $ BC\equal{}a, AC\equal{}b,$ and $ AB\equal{}c$ respectively. Let $ S, S_1$ denote the areas of the triangles $ ABC$ and $ DEF$ respectively. Find the maximum and minimum values of the quotient $ \frac{S}{S_1}$

2017 Bosnia and Herzegovina Team Selection Test, Problem 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2001 India IMO Training Camp, 3

Tags: geometry , inradius
Points $B = B_1 , B_2, \cdots , B_n , B_{n+1} = C$ are chosen on side $BC$ of a triangle $ABC$ in that order. Let $r_j$ be the inradius of triangle $AB_jB_{j+1}$ for $j = 1, \cdots, n$ , and $r$ be the inradius of $\triangle ABC$. Show that there is a constant $\lambda$ independent of $n$ such that : \[(\lambda -r_1)(\lambda -r_2)\cdots (\lambda -r_n) =\lambda^{n-1}(\lambda -r)\]

2004 Thailand Mathematical Olympiad, 21

The ratio between the circumradius and the inradius of a given triangle is $7 : 2$. If the length of two sides of the triangle are $3$ and $7$, and the length of the remaining side is also an integer, what is the length of the remaining side?

2008 Harvard-MIT Mathematics Tournament, 2

Tags: ratio , geometry , inradius
Let $ ABC$ be an equilateral triangle. Let $ \Omega$ be its incircle (circle inscribed in the triangle) and let $ \omega$ be a circle tangent externally to $ \Omega$ as well as to sides $ AB$ and $ AC$. Determine the ratio of the radius of $ \Omega$ to the radius of $ \omega$.

2008 Indonesia MO, 3

Tags: geometry , inradius , ratio
Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to $ \frac{\pi (a^{2}\plus{}b^{2}\plus{}c^{2})(b\plus{}c\minus{}a)(c\plus{}a\minus{}b)(a\plus{}b\minus{}c)}{(a\plus{}b\plus{}c)^{3}}$ (hmm,, looks familiar, isn't it? :wink: )

2008 ISI B.Stat Entrance Exam, 5

Tags: geometry , inradius
Suppose $ABC$ is a triangle with inradius $r$. The incircle touches the sides $BC, CA,$ and $AB$ at $D,E$ and $F$ respectively. If $BD=x, CE=y$ and $AF=z$, then show that \[r^2=\frac{xyz}{x+y+z}\]

1993 Poland - Second Round, 5

Let $D,E,F$ be points on the sides $BC,CA,AB$ of a triangle $ABC$, respectively. Suppose that the inradii of the triangles $AEF,BFD,CDE$ are all equal to $r_1$. If $r_2$ and $r$ are the inradii of triangles $DEF$ and $ABC$ respectively, prove that $r_1 +r_2 =r$.

2013 Purple Comet Problems, 17

A rectangle has side lengths $6$ and $8$. There are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that a point randomly selected from the inside of the rectangle is closer to a side of the rectangle than to either diagonal of the rectangle. Find $m + n$.

1995 Korea National Olympiad, Problem 3

Let $ABC$ be an equilateral triangle of side $1$, $D$ be a point on $BC$, and $r_1, r_2$ be the inradii of triangles $ABD$ and $ADC$. Express $r_1r_2$ in terms of $p = BD$ and find the maximum of $r_1r_2$.

2015 Romania Team Selection Tests, 2

Let $ABC$ be a triangle, and let $r$ denote its inradius. Let $R_A$ denote the radius of the circle internally tangent at $A$ to the circle $ABC$ and tangent to the line $BC$; the radii $R_B$ and $R_C$ are defined similarly. Show that $\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C}\leq\frac{2}{r}$.

2004 Moldova Team Selection Test, 7

Let $ABC$ be a triangle, let $O$ be its circumcenter, and let $H$ be its orthocenter. Let $P$ be a point on the segment $OH$. Prove that $6r\leq PA+PB+PC\leq 3R$, where $r$ is the inradius and $R$ the circumradius of triangle $ABC$. [b]Moderator edit:[/b] This is true only if the point $P$ lies inside the triangle $ABC$. (Of course, this is always fulfilled if triangle $ABC$ is acute-angled, since in this case the segment $OH$ completely lies inside the triangle $ABC$; but if triangle $ABC$ is obtuse-angled, then the condition about $P$ lying inside the triangle $ABC$ is really necessary.)

2007 China Northern MO, 4

The inradius of triangle $ ABC$ is $ 1$ and the side lengths of $ ABC$ are all integers. Prove that triangle $ ABC$ is right-angled.

2010 Germany Team Selection Test, 3

Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$. [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

1983 Bundeswettbewerb Mathematik, 2

The radii of the circumcircle and the incircle of a right triangle are given. Cconstruct that triangle with compass and ruler, describe the construction and justify why it is correct.

Kyiv City MO 1984-93 - geometry, 1987.7.1

The circle inscribed in the triangle $ABC$ touches the side BC at point $K$. Prove that the segment $AK$ is longer than the diameter of the circle.

2018 Israel National Olympiad, 6

In the corners of triangle $ABC$ there are three circles with the same radius. Each of them is tangent to two of the triangle's sides. The vertices of triangle $MNK$ lie on different sides of triangle $ABC$, and each edge of $MNK$ is also tangent to one of the three circles. Likewise, the vertices of triangle $PQR$ lie on different sides of triangle $ABC$, and each edge of $PQR$ is also tangent to one of the three circles (see picture below). Prove that triangles $MNK,PQR$ have the same inradius. [img]https://i.imgur.com/bYuBabS.png[/img]

1990 IMO Longlists, 81

A circle of radius $\rho$ is tangent to the sides $AB$ and $AC$ of the triangle $ABC$, and its center $K$ is at a distance $p$ from $BC$. [i](a)[/i] Prove that $a(p - \rho) = 2s(r - \rho)$, where $r$ is the inradius and $2s$ the perimeter of $ABC$. [i](b)[/i] Prove that if the circle intersect $BC$ at $D$ and $E$, then \[DE=\frac{4\sqrt{rr_1(\rho-r)(r_1-\rho)}}{r_1-r}\] where $r_1$ is the exradius corresponding to the vertex $A.$

2004 France Team Selection Test, 2

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

2006 India IMO Training Camp, 1

Let $ABC$ be a triangle with inradius $r$, circumradius $R$, and with sides $a=BC,b=CA,c=AB$. Prove that \[\frac{R}{2r} \ge \left(\frac{64a^2b^2c^2}{(4a^2-(b-c)^2)(4b^2-(c-a)^2)(4c^2-(a-b)^2)}\right)^2.\]

2010 Singapore Junior Math Olympiad, 1

Let the diagonals of the square $ABCD$ intersect at $S$ and let $P$ be the midpoint of $AB$. Let $M$ be the intersection of $AC$ and $PD$ and $N$ the intersection of $BD$ and $PC$. A circle is incribed in the quadrilateral $PMSN$. Prove that the radius of the circle is $MP- MS$.