This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 99

1975 Dutch Mathematical Olympiad, 4

Given is a rectangular plane coordinate system. (a) Prove that it is impossible to find an equilateral triangle whose vertices have integer coordinates. (b) In the plane the vertices $A, B$ and $C$ lie with integer coordinates in such a way that $AB = AC$. Prove that $\frac{d(A,BC)}{BC}$ is rational.

2009 Stars Of Mathematics, 3

Let $A,B,C$ be nodes of the lattice $Z\times Z$ such that inside the triangle $ABC$ lies a unique node $P$ of the lattice. Denote $E = AP \cap BC$. Determine max $\frac{AP}{PE}$ , over all such configurations.

1972 Poland - Second Round, 3

The coordinates of the triangle's vertices in the Cartesian system $XOY$ are integers. Prove that the diameter of the circle circumscribed by this triangle is not greater than the product of the lengths of the triangle's sides.

1977 IMO Longlists, 5

A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.

2020 Peru IMO TST, 3

Given a positive integer $n$, let $M$ be the set of all points in space with integer coordinates $(a, b, c)$ such that $0 \le a, b, c \le n$. A frog must go to the point $(0, 0, 0)$ to the point $(n, n, n)$ according to the following rules: $\bullet$ The frog can only jump to points of M. $\bullet$ In each jump, the frog can go from point $(a, b, c)$ to one of the following points: $(a + 1, b, c)$, $(a, b + 1, c)$, $(a, b, c + 1)$, or $(a, b, c - 1)$. $\bullet$ The frog cannot pass through the same point more than once. In how many different ways can the frog achieve its goal?

2014 Finnish National High School Mathematics, 3

The points $P = (a, b)$ and $Q = (c, d)$ are in the first quadrant of the $xy$ plane, and $a, b, c$ and $d$ are integers satisfying $a < b, a < c, b < d$ and $c < d$. A route from point $P$ to point $Q$ is a broken line consisting of unit steps in the directions of the positive coordinate axes. An allowed route is a route not touching the line $x = y$. Tetermine the number of allowed routes.

2024 Canadian Mathematical Olympiad Qualification, 5

Let $ S$ be the set of $25$ points $(x, y)$ with $0\le x, y \le 4$. A triangle whose three vertices are in $S$ is chosen at random. What is the expected value of the square of its area?

2023 Olympic Revenge, 4

Let $S=\{(x,y,z)\in \mathbb{Z}^3\}$ the set of points with integer coordinates in the space. Gugu has infinitely many solid spheres. All with radii $\ge (\frac{\pi}2)^3$. Is it possible for Gugu to cover all points of $S$ with his spheres?

2022 AMC 10, 25

Let $R$, $S$, and $T$ be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the x-axis. The left edge of $R$ and the right edge of $S$ are on the $y$-axis, and $R$ contains $\frac{9}{4}$ as many lattice points as does $S$. The top two vertices of $T$ are in $R \cup S$, and $T$ contains $\frac{1}{4}$ of the lattice points contained in $R \cup S$. See the figure (not drawn to scale). [asy] //kaaaaaaaaaante314 size(8cm); import olympiad; label(scale(.8)*"$y$", (0,60), N); label(scale(.8)*"$x$", (60,0), E); filldraw((0,0)--(55,0)--(55,55)--(0,55)--cycle, yellow+orange+white+white); label(scale(1.3)*"$R$", (55/2,55/2)); filldraw((0,0)--(0,28)--(-28,28)--(-28,0)--cycle, green+white+white); label(scale(1.3)*"$S$",(-14,14)); filldraw((-10,0)--(15,0)--(15,25)--(-10,25)--cycle, red+white+white); label(scale(1.3)*"$T$",(3.5,25/2)); draw((0,-10)--(0,60),EndArrow(TeXHead)); draw((-34,0)--(60,0),EndArrow(TeXHead));[/asy] The fraction of lattice points in $S$ that are in $S \cap T$ is 27 times the fraction of lattice points in $R$ that are in $R \cap T$. What is the minimum possible value of the edge length of $R$ plus the edge length of $S$ plus the edge length of $T$? $\textbf{(A) }336\qquad\textbf{(B) }337\qquad\textbf{(C) }338\qquad\textbf{(D) }339\qquad\textbf{(E) }340$

2015 Costa Rica - Final Round, LR4

Let $P =\{(a, b) / a, b \in \{1, 2, ..., n\}, n \in N\}$ be a set of point of the Cartesian plane and draw horizontal, vertical, or diagonal segments, of length $1$ or $\sqrt 2$, so that both ends of the segment are in $P$ and do not intersect each other. Furthermore, for each point $(a, b)$ it is true that i) if $a + b$ is a multiple of $3$, then it is an endpoint of exactly $3$ segments. ii) if $a + b$ is an even not multiple of $3$, then it is an endpoint of exactly $2$ segments. iii) if $a + b$ is an odd not multiple of $3$, then it is endpoint of exactly $1$ segment. a) Check that with $n = 6$ it is possible to satisfy all the conditions. b) Show that with $n = 2015$ it is not possible to satisfy all the conditions.

2017 Balkan MO Shortlist, C2

Let $n,a,b,c$ be natural numbers. Every point on the coordinate plane with integer coordinates is colored in one of $n$ colors. Prove there exists $c$ triangles whose vertices are colored in the same color, which are pairwise congruent, and which have a side whose lenght is divisible by $a$ and a side whose lenght is divisible by $b$.

2012 Danube Mathematical Competition, 1

Given a positive integer $n$, determine the maximum number of lattice points in the plane a square of side length $n +\frac{1}{2n+1}$ may cover.

2018 Ukraine Team Selection Test, 3

Consider the set of all integer points in $Z^3$. Sasha and Masha play such a game. At first, Masha marks an arbitrary point. After that, Sasha marks all the points on some a plane perpendicular to one of the coordinate axes and at no point, which Masha noted. Next, they continue to take turns (Masha can't to select previously marked points, Sasha cannot choose the planes on which there are points said Masha). Masha wants to mark $n$ consecutive points on some line that parallel to one of the coordinate axes, and Sasha seeks to interfere with it. Find all $n$, in which Masha can achieve the desired result.

2023 Chile National Olympiad, 2

In Cartesian space, let $\Omega = \{(a, b, c) : a, b, c$ are integers between $1$ and $30\}$. A point of $\Omega$ is said to be [i]visible [/i] from the origin if the segment that joins said point with the origin does not contain any other elements of $\Omega$. Find the number of points of $\Omega$ that are [i]visible [/i] from the origin.

2020 June Advanced Contest, 3

Let a [i]lattice tetrahedron[/i] denote a tetrahedron whose vertices have integer coordinates. Given a lattice tetrahedron, a [i]move[/i] consists of picking some vertex and moving it parallel to one of the three edges of the face opposite the vertex so that it lands on a different point with integer coordinates. Prove that any two lattice tetrahedra with the same volume can be transformed into each other by a series of moves

2004 All-Russian Olympiad Regional Round, 8.8

Is it possible to write natural numbers at all points of the plane with integer coordinates so that three points with integer coordinates lie on the same line if and only if the numbers written in them had a common divisor greater than one?

2009 Abels Math Contest (Norwegian MO) Final, 3b

Show for any positive integer $n$ that there exists a circle in the plane such that there are exactly $n$ grid points within the circle. (A grid point is a point having integer coordinates.)

Indonesia Regional MO OSP SMA - geometry, 2004.5

The lattice point on the plane is a point that has coordinates in the form of a pair of integers. Let $P_1, P_2, P_3, P_4, P_5$ be five different lattice points on the plane. Prove that there is a pair of points $(P_i, P_j), i \ne j$, so that the line segment $P_iP_j$ contains a lattice point other than $P_i$ and $P_j$.

Estonia Open Senior - geometry, 2018.1.1

Is there an equilateral triangle in the coordinate plane, both coordinates of each vertex of which are integers?

1981 Putnam, A6

Suppose that each of the vertices of $ABC$ is a lattice point in the $xy$-plane and that there is exactly one lattice point $P$ in the interior of the triangle. The line $AP$ is extended to meet $BC$ at $E$. Determine the largest possible value for the ratio of lengths of segments $$\frac{|AP|}{|PE|}.$$

2012 Bundeswettbewerb Mathematik, 4

A rectangle with the side lengths $a$ and $b$ with $a <b$ should be placed in a right-angled coordinate system so that there is no point with integer coordinates in its interior or on its edge. Under what necessary and at the same time sufficient conditions for $a$ and $b$ is this possible?

2014 Federal Competition For Advanced Students, 2

We call a set of squares with sides parallel to the coordinate axes and vertices with integer coordinates friendly if any two of them have exactly two points in common. We consider friendly sets in which each of the squares has sides of length $n$. Determine the largest possible number of squares in such a friendly set.

1991 Bundeswettbewerb Mathematik, 3

In a plane with a square grid, where the side length of the base square is $1$, lies a right triangle. All its vertices are lattice points and all side lengths are integer. Prove that the center of the incircle is also a lattice point.

2019 China Girls Math Olympiad, 4

Given parallelogram $OABC$ in the coodinate with $O$ the origin and $A,B,C$ be lattice points. Prove that for all lattice point $P$ in the internal or boundary of $\triangle ABC$, there exists lattice points $Q,R$(can be the same) in the internal or boundary of $\triangle OAC$ with $\overrightarrow{OP}=\overrightarrow{OQ}+\overrightarrow{OR}$.

2022 Caucasus Mathematical Olympiad, 4

Do there exist 2021 points with integer coordinates on the plane such that the pairwise distances between them are pairwise distinct consecutive integers?