This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 75

2014 Chile National Olympiad, 6

Prove that for every set of $2n$ lines in the plane, such that there are no two parallel lines, there are two lines that divide the plane into four quadrants such that in each quadrant the number of unbounded regions is equal to $n$. [asy] unitsize(1cm); pair[] A, B; pair P, Q, R, S; A[1] = (0,5.2); B[1] = (6.1,0); A[2] = (1.5,5.5); B[2] = (3.5,0); A[3] = (6.8,5.5); B[3] = (1,0); A[4] = (7,4.5); B[4] = (0,4); P = extension(A[2],B[2],A[4],B[4]); Q = extension(A[3],B[3],A[4],B[4]); R = extension(A[1],B[1],A[2],B[2]); S = extension(A[1],B[1],A[3],B[3]); fill(P--Q--S--R--cycle, palered); fill(A[4]--(7,0)--B[1]--S--Q--cycle, paleblue); draw(A[1]--B[1]); draw(A[2]--B[2]); draw(A[3]--B[3]); draw(A[4]--B[4]); label("Bounded region", (3.5,3.7), fontsize(8)); label("Unbounded region", (5.4,2.5), fontsize(8)); [/asy]

1948 Moscow Mathematical Olympiad, 147

Consider a circle and a point $A$ outside it. We start moving from $A$ along a closed broken line consisting of segments of tangents to the circle (the segment itself should not necessarily be tangent to the circle) and terminate back at $A$. (On the links of the broken line are solid.) We label parts of the segments with a plus sign if we approach the circle and with a minus sign otherwise. Prove that the sum of the lengths of the segments of our path, with the signs given, is zero. [img]https://cdn.artofproblemsolving.com/attachments/3/0/8d682813cf7dfc88af9314498b9afcecdf77d2.png[/img]

1976 Czech and Slovak Olympiad III A, 6

Consider two non-parallel half-planes $\pi,\pi'$ with the common boundary line $p.$ Four different points $A,B,C,D$ are given in the half-plane $\pi.$ Similarly, four points $A',B',C',D'\in\pi'$ are given such that $AA'\parallel BB'\parallel CC'\parallel DD'$. Moreover, none of these points lie on $p$ and the points $A,B,C,D'$ form a tetrahedron. Show that the points $A',B',C',D$ also form a tetrahedron with the same volume as $ABCD'.$

1986 All Soviet Union Mathematical Olympiad, 428

A line is drawn through the $A$ vertex of triangle $ABC$ with $|AB|\ne|AC|$. Prove that the line can not contain more than one point $M$ such, that $M$ is not a triangle vertex, and $\angle ABM = \angle ACM$. What lines do not contain such a point $M$ at all?

1985 All Soviet Union Mathematical Olympiad, 406

$n$ straight lines are drawn in a plane. They divide the plane onto several parts. Some of the parts are painted. Not a pair of painted parts has non-zero length common bound. Prove that the number of painted parts is not more than $\frac{n^2 + n}{3}$.

1999 Tournament Of Towns, 3

There are $n$ straight lines in the plane such that each intersects exactly $1999$ of the others . Find all posssible values of $n$. (R Zhenodarov)

2009 QEDMO 6th, 2

Let there be a finite number of straight lines in the plane, none of which are three in one point to cut. Show that the intersections of these straight lines can be colored with $3$ colors so that that no two points of the same color are adjacent on any of the straight lines. (Two points of intersection are called [i]adjacent [/i] if they both lie on one of the finitely many straight lines and there is no other such intersection on their connecting line.)

2002 Estonia National Olympiad, 4

Tags: max , cube , 3d geometry , line , geometry
Find the maximum length of a broken line on the surface of a unit cube, such that its links are the cube’s edges and diagonals of faces, the line does not intersect itself and passes no more than once through any vertex of the cube, and its endpoints are in two opposite vertices of the cube.

2018 Brazil EGMO TST, 4

In the plane, $n$ lines are drawn in general position (that is, there are neither two of them parallel nor three of them passing through the same point). Prove that it is possible to put a positive integer in each region (finite or infinite) determined by these lines so that for each line the sum of the numbers in the regions of a sdemiplane is equal to the sum of the numbers in the regions of the other semiplane. Note: A region is a set of points such that the straight line connecting any two of them it does not intersect any of the lines. For example, a line divides the plane into $2$ infinite regions and three lines into general position divide the plane into $7$ regions, some finite(s) and others infinite.

1979 All Soviet Union Mathematical Olympiad, 280

Given the point $O$ in the space and $1979$ straight lines $l_1, l_2, ... , l_{1979}$ containing it. Not a pair of lines is orthogonal. Given a point $A_1$ on $l_1$ that doesn't coincide with $O$. Prove that it is possible to choose the points $A_i$ on $l_i$ ($i = 2, 3, ... , 1979$) in so that $1979$ pairs will be orthogonal: $A_1A_3$ and $l_2$, $A_2A_4$ and $l_3$,$ ...$ , $A_{i-1}A_{i+1}$ and $l_i$,$ ...$ , $A_{1977}A_{1979}$ and $l_{1978}$, $A_{1978}A_1$ and $l_{1979}$, $A_{1979}A_2$ and $l_1$

Durer Math Competition CD Finals - geometry, 2017.C2

The triangle $ABC$ is isosceles and has a right angle at the vertex $A$. Construct all points that simultaneously satisfy the following two conditions: (i) are equidistant from points $A$ and $B$ (ii) heve distance exactly three times from point $C$ as far as from point $B$.

2019 Tournament Of Towns, 2

$2019$ point grasshoppers sit on a line. At each move one of the grasshoppers jumps over another one and lands at the point the same distance away from it. Jumping only to the right, the grasshoppers are able to position themselves so that some two of them are exactly $1$ mm apart. Prove that the grasshoppers can achieve the same, jumping only to the left and starting from the initial position. (Sergey Dorichenko)

1989 Tournament Of Towns, (221) 5

We are given $N$ lines ($N > 1$ ) in a plane, no two of which are parallel and no three of which have a point in common. Prove that it is possible to assign, to each region of the plane determined by these lines, a non-zero integer of absolute value not exceeding $N$ , such that the sum of the integers o n either side of any of the given lines is equal to $0$ . (S . Fomin, Leningrad)

2004 German National Olympiad, 2

Let $k$ be a circle with center $M.$ There is another circle $k_1$ whose center $M_1$ lies on $k,$ and we denote the line through $M$ and $M_1$ by $g.$ Let $T$ be a point on $k_1$ and inside $k.$ The tangent $t$ to $k_1$ at $T$ intersects $k$ in two points $A$ and $B.$ Denote the tangents (diifferent from $t$) to $k_1$ passing through $A$ and $B$ by $a$ and $b$, respectively. Prove that the lines $a,b,$ and $g$ are either concurrent or parallel.

2018 Dutch IMO TST, 1

A set of lines in the plan is called [i]nice [/i]i f every line in the set intersects an odd number of other lines in the set. Determine the smallest integer $k \ge 0$ having the following property: for each $2018$ distinct lines $\ell_1, \ell_2, ..., \ell_{2018}$ in the plane, there exist lines $\ell_{2018+1},\ell_{2018+2}, . . . , \ell_{2018+k}$ such that the lines $\ell_1, \ell_2, ..., \ell_{2018+k}$ are distinct and form a [i]nice [/i] set.

2016 IMAR Test, 2

Given a positive integer $n$, does there exist a planar polygon and a point in its plane such that every line through that point meets the boundary of the polygon at exactly $2n$ points?

1961 Putnam, B2

Tags: line , probability
Let $a$ and $b$ be given positive real numbers, with $a<b.$ If two points are selected at random from a straight line segment of length $b,$ what is the probability that the distance between them is at least $a?$

1983 Austrian-Polish Competition, 6

Six straight lines are given in space. Among any three of them, two are perpendicular. Show that the given lines can be labeled $\ell_1,...,\ell_6$ in such a way that $\ell_1, \ell_2, \ell_3$ are pairwise perpendicular, and so are $\ell_4, \ell_5, \ell_6$.

2009 All-Russian Olympiad Regional Round, 11.5

We drew several straight lines on the plane and marked all of them intersection points. How many lines could be drawn? if one point is marked on one of the drawn lines, on the other - three, and on the third - five? Find all possible options and prove that there are no others.

2014 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an acute triangle and $D \in (BC) , E \in (AD)$ be mobile points. The circumcircle of triangle $CDE$ meets the median from $C$ of the triangle $ABC$ at $F$ Prove that the circumcenter of triangle $AEF$ lies on a fixed line.

1955 Moscow Mathematical Olympiad, 295

Which convex domains (figures) on a plane can contain an entire straight line? It is assumed that the figure is flat and does not degenerate into a straight line and is closed, that is, it contains all its boundary points.

1970 Czech and Slovak Olympiad III A, 5

Let a real number $k$ and points $S,A,SA=1$ in plane be given. Denote $A'$ the image of $A$ under rotation by an oriented angle $\varphi$ with respect to center $S$. Similarly, let $A''$ be the image of $A'$ under homothety with the factor $\frac{1}{\cos\varphi-k\sin\varphi}$ with respect to center $S.$ Denote the locus \[\ell=\bigl\{A''\mid\varphi\in(-\pi,\pi],\cos\varphi-k\sin\varphi\neq0\bigr\}.\] Show that $\ell$ is a line containing $A.$

1973 Putnam, A6

Tags: line , geometry
Prove that it is impossible for seven distinct straight lines to be situated in the euclidean plane so as to have at least six points where exactly three of these lines intersect and at least four points where exactly two of these lines intersect.

1981 Spain Mathematical Olympiad, 3

Given the intersecting lines $ r$ and $s$, consider the lines $u$ and $v$ as such what: a) $u$ is symmetric to $r$ with respect to $s$, b) $v$ is symmetric to $s$ with respect to $r$ . Determine the angle that the given lines must form such that $u$ and $v$ to be coplanar.

1959 Putnam, B1

Let each of $m$ distinct points on the positive part of the $x$-axis be joined to $n$ distinct points on the positive part of the $y$-axis. Obtain a formula for the number of intersection points of these segments, assuming that no three of the segments are concurrent.