This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 288

1956 Moscow Mathematical Olympiad, 325

On sides $AB$ and $CB$ of $\vartriangle ABC$ there are drawn equal segments, $AD$ and $CE$, respectively, of arbitrary length (but shorter than min($AB,BC$)). Find the locus of midpoints of all possible segments $DE$.

1962 All Russian Mathematical Olympiad, 014

Tags: geometry , locus
Given the circumference $s$ and the straight line $l$, passing through the centre $O$ of $s$. Another circumference $s'$ passes through the point $O$ and has its centre on the $l$. Describe the set of the points $M$, where the common tangent of $s$ and $s'$ touches $s'$.

2011 Sharygin Geometry Olympiad, 7

Let a point $M$ not lying on coordinates axes be given. Points $Q$ and $P$ move along $Y$ - and $X$-axis respectively so that angle $P M Q$ is always right. Find the locus of points symmetric to $M$ wrt $P Q$.

2019 Sharygin Geometry Olympiad, 7

Let $P$ be an arbitrary point on side $BC$ of triangle $ABC$. Let $K$ be the incenter of triangle $PAB$. Let the incircle of triangle $PAC$ touch $BC$ at $F$. Point $G$ on $CK$ is such that $FG // PK$. Find the locus of $G$.

2014 Nordic, 2

Given an equilateral triangle, find all points inside the triangle such that the distance from the point to one of the sides is equal to the geometric mean of the distances from the point to the other two sides of the triangle.

1977 Czech and Slovak Olympiad III A, 3

Consider any complex units $Z,W$ with $\text{Im}\ Z\ge0,\text{Re}\,W\ge 0.$ Determine and draw the locus of all possible sums $S=Z+W$ in the complex plane.

2006 Sharygin Geometry Olympiad, 10.3

Given a circle and a point $P$ inside it, different from the center. We consider pairs of circles tangent to the given internally and to each other at point $P$. Find the locus of the points of intersection of the common external tangents to these circles.

2019 Gulf Math Olympiad, 1

Let $ABCD$ be a trapezium (trapezoid) with $AD$ parallel to $BC$ and $J$ be the intersection of the diagonals $AC$ and $BD$. Point $P$ a chosen on the side $BC$ such that the distance from $C$ to the line $AP$ is equal to the distance from $B$ to the line $DP$. [i]The following three questions 1, 2 and 3 are independent, so that a condition in one question does not apply in another question.[/i] 1.Suppose that $Area( \vartriangle AJB) =6$ and that $Area(\vartriangle BJC) = 9$. Determine $Area(\vartriangle APD)$. 2. Find all points $Q$ on the plane of the trapezium such that $Area(\vartriangle AQB) = Area(\vartriangle DQC)$. 3. Prove that $PJ$ is the angle bisector of $\angle APD$.

1966 IMO Longlists, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

2017 Yasinsky Geometry Olympiad, 6

Given a circle $\omega$ of radius $r$ and a point $A$, which is far from the center of the circle at a distance $d<r$. Find the geometric locus of vertices $C$ of all possible $ABCD$ rectangles, where points $B$ and $D$ lie on the circle $\omega$.

1975 Chisinau City MO, 94

Tags: geometry , locus
A straight line $\ell$ and a point $A$ outside of it are given on the plane. Find the locus of the vertices $C$ of the equilateral triangle $ABC$, the vertex $B$ of which lies on the straight line $\ell$.

2012 Czech-Polish-Slovak Junior Match, 2

On the circle $k$, the points $A,B$ are given, while $AB$ is not the diameter of the circle $k$. Point $C$ moves along the long arc $AB$ of circle $k$ so that the triangle $ABC$ is acute. Let $D,E$ be the feet of the altitudes from $A, B$ respectively. Let $F$ be the projection of point $D$ on line $AC$ and $G$ be the projection of point $E$ on line $BC$. (a) Prove that the lines $AB$ and $FG$ are parallel. (b) Determine the set of midpoints $S$ of segment $FG$ while along all allowable positions of point $C$.

2012 Ukraine Team Selection Test, 4

Given an isosceles triangle $ABC$ ($AB = AC$), the inscribed circle $\omega$ touches its sides $AB$ and $AC$ at points $K$ and $L$, respectively. On the extension of the side of the base $BC$, towards $B$, an arbitrary point $M$. is chosen. Line $M$ intersects $\omega$ at the point $N$ for the second time, line $BN$ intersects the second point $\omega$ at the point $P$. On the line $PK$, there is a point $X$ such that $K$ lies between $P$ and $X$ and $KX = KM$. Determine the locus of the point $X$.

1969 Spain Mathematical Olympiad, 1

Find the locus of the centers of the inversions that transform two points $A, B$ of a given circle $\gamma$ , at diametrically opposite points of the inverse circles of $\gamma$ .

2009 Sharygin Geometry Olympiad, 4

Three parallel lines $d_a, d_b, d_c$ pass through the vertex of triangle $ABC$. The reflections of $d_a, d_b, d_c$ in $BC, CA, AB$ respectively form triangle $XYZ$. Find the locus of incenters of such triangles. (C.Pohoata)

2024 ITAMO, 2

Tags: locus , geometry
We are given a unit square in the plane. A point $M$ in the plane is called [i]median [/i]if there exists points $P$ and $Q$ on the boundary of the square such that $PQ$ has length one and $M$ is the midpoint of $PQ$. Determine the geometric locus of all median points.

1966 IMO Shortlist, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

2016 Puerto Rico Team Selection Test, 5

Tags: geometry , locus , area
$ABCD$ is a quadrilateral, $E, F, G, H$ are the midpoints of $AB$, $BC$, $CD$, $DA$ respectively. Find the point $P$ such that area $(PHAE) =$ area $(PEBF) =$ area $(PFCG) =$ area $(PGDH).$

1949-56 Chisinau City MO, 44

Determine the locus of points, for each of which the difference between the squares of the distances to two given points is a constant value.

1974 Chisinau City MO, 83

Let $O$ be the center of the regular triangle $ABC$. Find the set of all points $M$ such that any line containing the point $M$ intersects one of the segments $AB, OC$.

2000 Austrian-Polish Competition, 7

Triangle $A_0B_0C_0$ is given in the plane. Consider all triangles $ABC$ such that: (i) The lines $AB,BC,CA$ pass through $C_0,A_0,B_0$, respectvely, (ii) The triangles $ABC$ and $A_0B_0C_0$ are similar. Find the possible positions of the circumcenter of triangle $ABC$.

Ukrainian TYM Qualifying - geometry, 2011.5

The circle $\omega_0$ touches the line at point A. Let $R$ be a given positive number. We consider various circles $\omega$ of radius $R$ that touch a line $\ell$ and have two different points in common with the circle $\omega_0$. Let $D$ be the touchpoint of the circle $\omega_0$ with the line $\ell$, and the points of intersection of the circles $\omega$ and $\omega_0$ are denoted by $B$ and $C$ (Assume that the distance from point $B$ to the line $\ell$ is greater than the distance from point $C$ to this line). Find the locus of the centers of the circumscribed circles of all such triangles $ABD$.

1986 Tournament Of Towns, (123) 5

Find the locus of the orthocentres (i.e. the point where three altitudes meet) of the triangles inscribed in a given circle . (A. Andjans, Riga)

1954 Moscow Mathematical Olympiad, 280

Tags: locus , ratio , geometry
Rays $l_1$ and $l_2$ pass through a point $O$. Segments $OA_1$ and $OB_1$ on $l_1$, and $OA_2$ and $OB_2$ on $l_2$, are drawn so that $\frac{OA_1}{OA_2} \ne \frac{OB_1}{OB_2}$ . Find the set of all intersection points of lines $A_1A_2$ and $B_1B_2$ as $l_2$ rotates around $O$ while $l_1$ is fixed.

2022 Argentina National Olympiad, 3

Given a square $ABCD$, let us consider an equilateral triangle $KLM$, whose vertices $K$, $L$ and $M$ belong to the sides $AB$, $BC$ and $CD$ respectively. Find the locus of the midpoints of the sides $KL$ for all possible equilateral triangles $KLM$. Note: The set of points that satisfy a property is called a locus.