This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 155

1962 All Russian Mathematical Olympiad, 023

What maximal area can have a triangle if its sides $a,b,c$ satisfy inequality $0\le a\le 1\le b\le 2\le c\le 3$ ?

2006 Sharygin Geometry Olympiad, 8.1

Inscribe the equilateral triangle of the largest perimeter in a given semicircle.

Estonia Open Senior - geometry, 1996.1.4

A unit square has a circle of radius $r$ with center at it's midpoint. The four quarter circles are centered on the vertices of the square and are tangent to the central circle (see figure). Find the maximum and minimum possible value of the area of the striped figure in the figure and the corresponding values of $r$ such these, the maximum and minimum are achieved. [img]https://2.bp.blogspot.com/-DOT4_B5Mx-8/XnmsTlWYfyI/AAAAAAAALgs/TVYkrhqHYGAeG8eFuqFxGDCTnogVbQFUwCK4BGAYYCw/s400/96%2Bestonia%2Bopen%2Bs1.4.png[/img]

2010 Dutch IMO TST, 2

Find all functions $f : R \to R$ which satisfy $f(x) = max_{y\in R} (2xy - f(y))$ for all $x \in R$.

1954 Moscow Mathematical Olympiad, 263

Define the maximal value of the ratio of a three-digit number to the sum of its digits.

2002 Cono Sur Olympiad, 5

Consider the set $A = \{1, 2, ..., n\}$. For each integer $k$, let $r_k$ be the largest quantity of different elements of $A$ that we can choose so that the difference between two numbers chosen is always different from $k$. Determine the highest value possible of $r_k$, where $1 \le k \le \frac{n}{2}$

2016 German National Olympiad, 6

Let \[ f(x_1,x_2,x_3,x_4,x_5,x_6,x_7)=x_1x_2x_4+x_2x_3x_5+x_3x_4x_6+x_4x_5x_7+x_5x_6x_1+x_6x_7x_2+x_7x_1x_3 \] be defined for non-negative real numbers $x_1,x_2,\dots,x_7$ with sum $1$. Prove that $f(x_1,x_2,\dots,x_7)$ has a maximum value and find that value.

1956 Moscow Mathematical Olympiad, 327

On an infinite sheet of graph paper a table is drawn so that in each square of the table stands a number equal to the arithmetic mean of the four adjacent numbers. Out of the table a piece is cut along the lines of the graph paper. Prove that the largest number on the piece always occurs at an edge, where $x = \frac14 (a + b + c + d)$.

2016 India PRMO, 10

Let $M$ be the maximum value of $(6x-3y-8z)$, subject to $2x^2+3y^2+4z^2 = 1$. Find $[M]$.

2018 Bosnia And Herzegovina - Regional Olympiad, 5

Board with dimesions $2018 \times 2018$ is divided in unit cells $1 \times 1$. In some cells of board are placed black chips and in some white chips (in every cell maximum is one chip). Firstly we remove all black chips from columns which contain white chips, and then we remove all white chips from rows which contain black chips. If $W$ is number of remaining white chips, and $B$ number of remaining black chips on board and $A=min\{W,B\}$, determine maximum of $A$

1975 All Soviet Union Mathematical Olympiad, 218

The world and the european champion are determined in the same tournament carried in one round. There are $20$ teams and $k$ of them are european. The european champion is determined according to the results of the games only between those $k$ teams. What is the greatest $k$ such that the situation, when the single european champion is the single world outsider, is possible if: a) it is hockey (draws allowed)? b) it is volleyball (no draws)?

2017 LMT, Max Area

The goal of this problem is to show that the maximum area of a polygon with a fixed number of sides and a fixed perimeter is achieved by a regular polygon. (a) Prove that the polygon with maximum area must be convex. (Hint: If any angle is concave, show that the polygon’s area can be increased.) (b) Prove that if two adjacent sides have different lengths, the area of the polygon can be increased without changing the perimeter. (c) Prove that the polygon with maximum area is equilateral, that is, has all the same side lengths. It is true that when given all four side lengths in order of a quadrilateral, the maximum area is achieved in the unique configuration in which the quadrilateral is cyclic, that is, it can be inscribed in a circle. (d) Prove that in an equilateral polygon, if any two adjacent angles are different then the area of the polygon can be increased without changing the perimeter. (e) Prove that the polygon of maximum area must be equiangular, or have all angles equal. (f ) Prove that the polygon of maximum area is a regular polygon. PS. You had better use hide for answers.

2015 Abels Math Contest (Norwegian MO) Final, 2b

Nils is playing a game with a bag originally containing $n$ red and one black marble. He begins with a fortune equal to $1$. In each move he picks a real number $x$ with $0 \le x \le y$, where his present fortune is $y$. Then he draws a marble from the bag. If the marble is red, his fortune increases by $x$, but if it is black, it decreases by $x$. The game is over after $n$ moves when there is only a single marble left. In each move Nils chooses $x$ so that he ensures a final fortune greater or equal to $Y$ . What is the largest possible value of $Y$?

2018 India PRMO, 11

There are several teacups in the kitchen, some with handles and the others without handles. The number of ways of selecting two cups without a handle and three with a handle is exactly $1200$. What is the maximum possible number of cups in the kitchen?

1987 Brazil National Olympiad, 5

Tags: geometry , prism , maximum
$A$ and $B$ wish to divide a cake into two pieces. Each wants the largest piece he can get. The cake is a triangular prism with the triangular faces horizontal. $A$ chooses a point $P$ on the top face. $B$ then chooses a vertical plane through the point $P$ to divide the cake. $B$ chooses which piece to take. Which point $P$ should $A $ choose in order to secure as large a slice as possible?

2007 Sharygin Geometry Olympiad, 20

The base of a pyramid is a regular triangle having side of size $1$. Two of three angles at the vertex of the pyramid are right. Find the maximum value of the volume of the pyramid.

2021 Regional Olympiad of Mexico Southeast, 3

Let $a, b, c$ positive reals such that $a+b+c=1$. Prove that $$\min\{a(1-b),b(1-c),c(1-a)\}\leq \frac{1}{4}$$ $$\max\{a(1-b),b(1-c),c(1-a)\}\geq \frac{2}{9}$$

2014 Contests, 4

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is $17$. What is the greatest possible perimeter of the triangle?

2019 Dutch IMO TST, 3

Let $n$ be a positive integer. Determine the maximum value of $gcd(a, b) + gcd(b, c) + gcd(c, a)$ for positive integers $a, b, c$ such that $a + b + c = 5n$.

2014 Contests, 1

A natural number $k$ is such that $k^2 < 2014 < (k +1)^2$. What is the largest prime factor of $k$?

1994 ITAMO, 5

Let $OP$ be a diagonal of a unit cube. Find the minimum and the maximum value of the area of the intersection of the cube with a plane through $OP$.

2016 India PRMO, 11

For real numbers $x$ and $y$, let $M$ be the maximum value of the expression $x^4y + x^3y + x^2y + xy + xy^2 + xy^3 + xy^4$, subject to $x + y = 3$. Find $[M]$.

1986 Brazil National Olympiad, 5

A number is written in each square of a chessboard, so that each number not on the border is the mean of the $4$ neighboring numbers. Show that if the largest number is $N$, then there is a number equal to $N$ in the border squares.

2018 Hanoi Open Mathematics Competitions, 2

What is the largest area of a regular hexagon that can be drawn inside the equilateral triangle of side $3$? A. $3\sqrt7$ B. $\frac{3 \sqrt3}{2}$ C. $2\sqrt5$ D. $\frac{3\sqrt3}{8}$ E. $3\sqrt5$

1997 Spain Mathematical Olympiad, 2

A square of side $5$ is divided into $25$ unit squares. Let $A$ be the set of the $16$ interior points of the initial square which are vertices of the unit squares. What is the largest number of points of $A$ no three of which form an isosceles right triangle?