This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 99

2019 Hanoi Open Mathematics Competitions, 9

Let $a$ and $b$ be positive real numbers with $a > b$. Find the smallest possible values of $$S = 2a +3 +\frac{32}{(a - b)(2b +3)^2}$$

2009 Postal Coaching, 1

Find the minimum value of the expression $f(a, b, c) = (a + b)^4 + (b + c)^4 + (c + a)^4 - \frac47 (a^4 + b^4 + c^4)$, as $a, b, c$ varies over the set of all real numbers

2011 Junior Balkan Team Selection Tests - Moldova, 1

The absolute value of the difference of the solutions of the equation $x^2 + px + q = 0$, with $p, q \in R$, is equal to $4$. Find the solutions of the equation if it is known that $(q + 1) p^2 + q^2$ takes the minimum value.

2009 Ukraine Team Selection Test, 11

Suppose that integers are given $m <n $. Consider a spreadsheet of size $n \times n $, whose cells arbitrarily record all integers from $1 $ to ${{n} ^ {2}} $. Each row of the table is colored in yellow $m$ the largest elements. Similarly, the blue colors the $m$ of the largest elements in each column. Find the smallest number of cells that are colored yellow and blue at a time

2020 Vietnam Team Selection Test, 1

Tags: algebra , sum , min
Given that $n> 2$ is a positive integer and a sequence of positive integers $a_1 <a_2 <...<a_n$. In the subsets of the set $\{1,2,..., n\} $, there a subset $X$ such that $| \sum_{i \notin X} a_i -\sum_{i \in X} a_i |$ is the smallest . Prove that there exists a sequence of positive integers $0<b_1 <b_2 <...<b_n$ such that $\sum_{i \notin X} b_i= \sum_{i \in X} b_i$. In case this doesn't make sense, have a look at [url=https://drive.google.com/file/d/1xoBhJlG0xHwn6zAAA7AZDoaAqzZue-73/view]original wording in Vietnamese[/url].

2016 Singapore Senior Math Olympiad, 2

Let $n$ be a positive integer. Determine the minimum number of lines that can be drawn on the plane so that they intersect in exactly $n$ distinct points.

2015 Saudi Arabia JBMO TST, 4

The numbers $1,2,...,64 $ are written on the unit squares of a table $8 \times 8$. The two smallest numbers of every row are marked black and the two smaller numbers of every comlumn are marked white. Prove or disprove that there are at least k numbers on the table that are marked both black and white when: a) $k=3$ b) $k=4$ c) $k=5$ .

2020 Greece JBMO TST, 4

Let $A$ and $B$ be two non-empty subsets of $X = \{1, 2, . . . , 8 \}$ with $A \cup B = X$ and $A \cap B = \emptyset$. Let $P_A$ be the product of all elements of $A$ and let $P_B$ be the product of all elements of $B$. Find the minimum possible value of sum $P_A +P_B$. PS. It is a variation of [url=https://artofproblemsolving.com/community/c6h2267998p17621980]JBMO Shortlist 2019 A3 [/url]

1987 Austrian-Polish Competition, 6

Let $C$ be a unit circle and $n \ge 1$ be a fixed integer. For any set $A$ of $n$ points $P_1,..., P_n$ on $C$ define $D(A) = \underset{d}{max}\, \underset{i}{min}\delta (P_i, d)$, where $d$ goes over all diameters of $C$ and $\delta (P, \ell)$ denotes the distance from point $P$ to line $\ell$. Let $F_n$ be the family of all such sets $A$. Determine $D_n = \underset{A\in F_n}{min} D(A)$ and describe all sets $A$ with $D(A) = D_n$.

2015 Swedish Mathematical Competition, 3

Let $a$, $b$, $c$ be positive real numbers. Determine the minimum value of the following expression $$ \frac{a^2+2b^2+4c^2}{b(a+2c)}$$

2007 Singapore Senior Math Olympiad, 5

Tags: algebra , inequalities , min , max
Find the maximum and minimum of $x + y$ such that $x + y = \sqrt{2x-1}+\sqrt{4y+3}$

1989 Romania Team Selection Test, 3

(a) Find the point $M$ in the plane of triangle $ABC$ for which the sum $MA + MB+ MC$ is minimal. (b) Given a parallelogram $ABCD$ whose angles do not exceed $120^o$, determine $min \{MA+ MB+NC+ND+ MN | M,N$ are in the plane $ABCD\}$ in terms of the sides and angles of the parallelogram.

2011 Bundeswettbewerb Mathematik, 4

Let $ABCD$ be a tetrahedron that is not degenerate and not necessarily regular, where sides $AD$ and $BC$ have the same length $a$, sides $BD$ and $AC$ have the same length $b$, side $AB$ has length $c_1$ and the side $CD$ has length $c_2$. There is a point $P$ for which the sum of the distances to the vertices of the tetrahedron is minimal. Determine this sum depending on the quantities $a, b, c_1$ and $c_2$.

2013 Saudi Arabia IMO TST, 1

Tags: inequalities , algebra , min , max
Find the maximum and the minimum values of $S = (1 - x_1)(1 -y_1) + (1 - x_2)(1 - y_2)$ for real numbers $x_1, x_2, y_1,y_2$ with $x_1^2 + x_2^2 = y_1^2 + y_2^2 = 2013$.

2003 Belarusian National Olympiad, 4

Tags: inequalities , algebra , sum , min
Positive numbers $a_1,a_2,...,a_n, b_1, b_2,...,b_n$ satisfy the condition $a_1+a_2+...+a_n=b_1+ b_2+...+b_n=1$. Find the smallest possible value of the sum $$\frac{a_1^2}{a_1+b_1}+\frac{a_2^2}{a_2+b_2}+...+\frac{a_n^2}{a_n+b_n}$$ (V.Kolbun)

1999 Czech And Slovak Olympiad IIIA, 1

We are allowed to put several brackets in the expression $$\frac{29 : 28 : 27 : 26 :... : 17 : 16}{15 : 14 : 13 : 12 : ... : 3 : 2}$$ always in the same places below each other. (a) Find the smallest possible integer value we can obtain in that way. (b) Find all possible integer values that can be obtained. Remark: in this problem, $$\frac{(29 : 28) : 27 : ... : 16}{(15 : 14) : 13 : ... : 2},$$ is valid position of parenthesis, on the other hand $$\frac{(29 : 28) : 27 : ... : 16}{15 : (14 : 13) : ... : 2}$$ is forbidden.

2015 Dutch IMO TST, 5

Let $N$ be the set of positive integers. Find all the functions $f: N\to N$ with $f (1) = 2$ and such that $max \{f(m)+f(n), m+n\}$ divides $min\{2m+2n,f (m+ n)+1\}$ for all $m, n$ positive integers

1957 Moscow Mathematical Olympiad, 369

Represent $1957$ as the sum of $12$ positive integer summands $a_1, a_2, ... , a_{12}$ for which the number $a_1! \cdot a_2! \cdot a_3! \cdot ... \cdot a_{12}!$ is minimal.

2003 Junior Balkan Team Selection Tests - Romania, 4

Two unit squares with parallel sides overlap by a rectangle of area $1/8$. Find the extreme values of the distance between the centers of the squares.

1968 Swedish Mathematical Competition, 1

Tags: inequalities , algebra , min , max
Find the maximum and minimum values of $x^2 + 2y^2 + 3z^2$ for real $x, y, z$ satisfying $x^2 + y^2 + z^2 = 1$.

2000 German National Olympiad, 2

For an integer $n \ge 2$, find all real numbers $x$ for which the polynomial $f(x) = (x-1)^4 +(x-2)^4 +...+(x-n)^4$ takes its minimum value.

Novosibirsk Oral Geo Oly VIII, 2017.1

Tags: geometry , grid , min
Petya and Vasya live in neighboring houses (see the plan in the figure). Vasya lives in the fourth entrance. It is known that Petya runs to Vasya by the shortest route (it is not necessary walking along the sides of the cells) and it does not matter from which side he runs around his house. Determine in which entrance he lives Petya . [img]https://cdn.artofproblemsolving.com/attachments/b/1/741120341a54527b179e95680aaf1c4b98ff84.png[/img]

2018 Brazil EGMO TST, 2

(a) Let $x$ be a real number with $x \ge 1$. Prove that $x^3 - 5x^2 + 8x - 4 \ge 0$. (b) Let $a, b \ge 1$ real numbers. Find the minimum value of the expression $ab(a + b - 10) + 8(a + b)$. Determine also the real number pairs $(a, b)$ that make this expression equal to this minimum value.

2020 Estonia Team Selection Test, 2

Let $n$ be an integer, $n \ge 3$. Select $n$ points on the plane, none of which are three on the same line. Consider all triangles with vertices at selected points, denote the smallest of all the interior angles of these triangles by the variable $\alpha$. Find the largest possible value of $\alpha$ and identify all the selected $n$ point placements for which the max occurs.