This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 35

1995 IMO Shortlist, 8

Let $ p$ be an odd prime. Determine positive integers $ x$ and $ y$ for which $ x \leq y$ and $ \sqrt{2p} \minus{} \sqrt{x} \minus{} \sqrt{y}$ is non-negative and as small as possible.

2001 China Team Selection Test, 3

Let $F = \max_{1 \leq x \leq 3} |x^3 - ax^2 - bx - c|$. When $a$, $b$, $c$ run over all the real numbers, find the smallest possible value of $F$.

1990 IMO Shortlist, 21

Let $ n$ be a composite natural number and $ p$ a proper divisor of $ n.$ Find the binary representation of the smallest natural number $ N$ such that \[ \frac{(1 \plus{} 2^p \plus{} 2^{n\minus{}p})N \minus{} 1}{2^n}\] is an integer.

1983 IMO Shortlist, 17

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

1982 IMO Longlists, 17

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$

1990 IMO Longlists, 5

Given the condition that there exist exactly $1990$ triangles $ABC$ with integral side-lengths satisfying the following conditions: (i) $\angle ABC =\frac 12 \angle BAC;$ (ii) $AC = b.$ Find the minimal value of $b.$

1989 IMO Longlists, 84

Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which \[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\] where $ x_0, x_1, \ldots , x_n$ are real variables.

2009 Greece Team Selection Test, 4

Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions: [b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$. [b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$. [b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$. Determine the minimum possible sum of the [i]"values"[/i] of the segments.

1982 IMO, 3

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

1982 IMO Shortlist, 3

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

1981 IMO, 1

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

1989 IMO Shortlist, 26

Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which \[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\] where $ x_0, x_1, \ldots , x_n$ are real variables.

1981 IMO Shortlist, 15

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

1986 IMO Longlists, 8

A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$

1987 IMO Longlists, 22

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

1982 IMO Longlists, 4

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$

1987 IMO Shortlist, 5

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

2001 China Team Selection Test, 3

Let $F = \max_{1 \leq x \leq 3} |x^3 - ax^2 - bx - c|$. When $a$, $b$, $c$ run over all the real numbers, find the smallest possible value of $F$.

1982 IMO Longlists, 53

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

1983 IMO Longlists, 35

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

2001 IMO Shortlist, 3

Let $ABC$ be a triangle with centroid $G$. Determine, with proof, the position of the point $P$ in the plane of $ABC$ such that $AP{\cdot}AG + BP{\cdot}BG + CP{\cdot}CG$ is a minimum, and express this minimum value in terms of the side lengths of $ABC$.

2010 Bosnia and Herzegovina Junior BMO TST, 2

Let us consider every third degree polynomial $P(x)$ with coefficients as nonnegative positive integers such that $P(1)=20$. Among them determine polynomial for which is: $a)$ Minimal value of $P(4)$ $b)$ Maximal value of $P(3)/P(2)$

1997 IMO Shortlist, 26

For every integer $ n \geq 2$ determine the minimum value that the sum $ \sum^n_{i\equal{}0} a_i$ can take for nonnegative numbers $ a_0, a_1, \ldots, a_n$ satisfying the condition $ a_0 \equal{} 1,$ $ a_i \leq a_{i\plus{}1} \plus{} a_{i\plus{}2}$ for $ i \equal{} 0, \ldots, n \minus{} 2.$

1986 IMO Shortlist, 19

A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$

1974 IMO Shortlist, 4

The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$