This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 43

Russian TST 2014, P3

Let $x,y,z$ be real numbers. Find the minimum value of the sum \begin{align*}|\cos(x)|+|\cos(y)|+|\cos(z)|+|\cos(x-y)|+|\cos(y-z)|+|\cos(z-x)|.\end{align*}

1968 IMO Shortlist, 1

Two ships sail on the sea with constant speeds and fixed directions. It is known that at $9:00$ the distance between them was $20$ miles; at $9:35$, $15$ miles; and at $9:55$, $13$ miles. At what moment were the ships the smallest distance from each other, and what was that distance ?

2017 Pan-African Shortlist, I4

Find the maximum and minimum of the expression \[ \max(a_1, a_2) + \max(a_2, a_3), + \dots + \max(a_{n-1}, a_n) + \max(a_n, a_1), \] where $(a_1, a_2, \dots, a_n)$ runs over the set of permutations of $(1, 2, \dots, n)$.

2021 South East Mathematical Olympiad, 8

A sequence $\{z_n\}$ satisfies that for any positive integer $i,$ $z_i\in\{0,1,\cdots,9\}$ and $z_i\equiv i-1 \pmod {10}.$ Suppose there is $2021$ non-negative reals $x_1,x_2,\cdots,x_{2021}$ such that for $k=1,2,\cdots,2021,$ $$\sum_{i=1}^kx_i\geq\sum_{i=1}^kz_i,\sum_{i=1}^kx_i\leq\sum_{i=1}^kz_i+\sum_{j=1}^{10}\dfrac{10-j}{50}z_{k+j}.$$ Determine the least possible value of $\sum_{i=1}^{2021}x_i^2.$

2022 Korea Winter Program Practice Test, 4

There are $2022$ students in winter school. Two arbitrary students are friend or enemy each other. Each turn, we choose a student $S$, make friends of $S$ enemies, and make enemies of $S$ friends. This continues until it satisfies the final condition. [b]Final Condition[/b] : For any partition of students into two non-empty groups $A$, $B$, there exist two students $a$, $b$ such that $a\in A$, $b\in B$, and $a$, $b$ are friend each other. Determine the minimum value of $n$ such that regardless of the initial condition, we can satisfy the final condition with no more than $n$ turns.

2012 Balkan MO Shortlist, A4

Let $ABCD$ be a square of the plane $P$. Define the minimum and the maximum the value of the function $f: P \to R$ is given by $f (P) =\frac{PA + PB}{PC + PD}$

Russian TST 2014, P3

Let $n>1$ be an integer and $x_1,x_2,\ldots,x_n$ be $n{}$ arbitrary real numbers. Determine the minimum value of \[\sum_{i<j}|\cos(x_i-x_j)|.\]

2009 Philippine MO, 4

Let $k$ be a positive real number such that $$\frac{1}{k+a} + \frac{1}{k+b} + \frac{1}{k+c} \leq 1$$ for any positive positive real numbers $a$, $b$ and $c$ with $abc = 1$. Find the minimum value of $k$.

2019 Greece Team Selection Test, 1

Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as [i]value [/i] of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .

1995 Czech and Slovak Match, 4

For each real number $p > 1$, find the minimum possible value of the sum $x+y$, where the numbers $x$ and $y$ satisfy the equation $(x+\sqrt{1+x^2})(y+\sqrt{1+y^2}) = p$.

2019 Spain Mathematical Olympiad, 5

We consider all pairs (x, y) of real numbers such that $0\leq x \leq y \leq 1$.Let $M (x,y)$ the maximum value of the set $$A=\{xy, 1-x-y+xy, x+y-2xy\}.$$ Find the minimum value that $M(x,y)$ can take for all these pairs $(x,y)$.

1988 Nordic, 4

Let $m_n$ be the smallest value of the function ${{f}_{n}}\left( x \right)=\sum\limits_{k=0}^{2n}{{{x}^{k}}}$ Show that $m_n \to \frac{1}{2}$, as $n \to \infty.$

2019 Tuymaada Olympiad, 3

The plan of a picture gallery is a chequered figure where each square is a room, and every room can be reached from each other by moving to adjacent rooms. A custodian in a room can watch all the rooms that can be reached from this room by one move of a chess queen (without leaving the gallery). What minimum number of custodians is sufficient to watch all the rooms in every gallery of $n$ rooms ($n > 2$)?

2019 Greece Team Selection Test, 1

Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as [i]value [/i] of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .

2023 Turkey EGMO TST, 3

Let $x,y,z$ be positive real numbers that satisfy at least one of the inequalities, $2xy>1$, $yz>1$. Find the least possible value of $$xy^3z^2+\frac{4z}{x}-8yz-\frac{4}{yz}$$ .

2020 Kosovo National Mathematical Olympiad, 3

Let $a$ and $b$ be real numbers such that $a+b=\log_2( \log_2 3)$. What is the minimum value of $2^a + 3^b$ ?

2019 Tuymaada Olympiad, 3

The plan of a picture gallery is a chequered figure where each square is a room, and every room can be reached from each other by moving to rooms adjacent by side. A custodian in a room can watch all the rooms that can be reached from this room by one move of a chess rook (without leaving the gallery). What minimum number of custodians is sufficient to watch all the rooms in every gallery of $n$ rooms ($n > 1$)?

2014 JBMO Shortlist, 2

In a country with $n$ towns, all the direct flights are of double destinations (back and forth). There are $r>2014$ rootes between different pairs of towns, that include no more than one intermediate stop (direction of each root matters). Find the minimum possible value of $n$ and the minimum possible $r$ for that value of $n$.

2015 Bosnia Herzegovina Team Selection Test, 1

Determine the minimum value of the expression $$\frac {a+1}{a(a+2)}+ \frac {b+1}{b(b+2)}+\frac {c+1}{c(c+2)}$$ for positive real numbers $a,b,c$ such that $a+b+c \leq 3$.

2018 IMAR Test, 2

Let $P$ be a non-zero polynomial with non-negative real coefficients, let $N$ be a positive integer, and let $\sigma$ be a permutation of the set $\{1,2,...,n\}$. Determine the least value the sum \[\sum_{i=1}^{n}\frac{P(x_i^2)}{P(x_ix_{\sigma(i)})}\] may achieve, as $x_1,x_2,...,x_n$ run through the set of positive real numbers. [i]Fedor Petrov[/i]

2019 Turkey EGMO TST, 2

Let $a,b,c$ be positive reals such that $abc=1$, $a+b+c=5$ and $$(ab+2a+2b-9)(bc+2b+2c-9)(ca+2c+2a-9)\geq 0$$. Find the minimum value of $$\frac {1}{a}+ \frac {1}{b}+ \frac{1}{c}$$

2021 Brazil National Olympiad, 4

A set \(A\) of real numbers is framed when it is bounded and, for all \(a, b \in A\), not necessarily distinct, \((a-b)^{2} \in A\). What is the smallest real number that belongs to some framed set?

2023 Brazil National Olympiad, 4

Determine the smallest integer $k$ for which there are three distinct positive integers $a$, $b$ and $c$, such that $$a^2 =bc \text{ and } k = 2b+3c-a.$$

2017 Oral Moscow Geometry Olympiad, 4

We consider triangles $ABC$, in which the point $M$ lies on the side $AB$, $AM = a$, $BM = b$, $CM = c$ ($c <a, c <b$). Find the smallest radius of the circumcircle of such triangles.

2016 IMC, 2

Today, Ivan the Confessor prefers continuous functions $f:[0,1]\to\mathbb{R}$ satisfying $f(x)+f(y)\geq |x-y|$ for all pairs $x,y\in [0,1]$. Find the minimum of $\int_0^1 f$ over all preferred functions. (Proposed by Fedor Petrov, St. Petersburg State University)