This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 316

2003 Estonia Team Selection Test, 6

Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ . (J. Willemson)

2015 Junior Balkan Team Selection Tests - Romania, 5

Let $ABCD$ be a convex quadrilateral with non perpendicular diagonals and with the sides $AB$ and $CD$ non parallel . Denote by $O$ the intersection of the diagonals , $H_1$ the orthocenter of the triangle $AOB$ and $H_2$ the orthocenter of the triangle $COD$ . Also denote with $M$ the midpoint of the side $AB$ and with $N$ the midpoint of the side $CD$ . Prove that $H_1H_2$ and $MN$ are parallel if and only if $AC=BD$

2005 Sharygin Geometry Olympiad, 9.4

Let $P$ be the intersection point of the diagonals of the quadrangle $ABCD$, $M$ the intersection point of the lines connecting the midpoints of its opposite sides, $O$ the intersection point of the perpendicular bisectors of the diagonals, $H$ the intersection point of the lines connecting the orthocenters of the triangles $APD$ and $BCP$, $APB$ and $CPD$. Prove that $M$ is the midpoint of $OH$.

2020 Yasinsky Geometry Olympiad, 6

In the triangle $ABC$ the altitude $BD$ and $CT$ are drawn, they intersect at the point $H$. The point $Q$ is the foot of the perpendicular drawn from the point $H$ on the bisector of the angle $A$. Prove that the bisector of the external angle $A$ of the triangle $ABC$, the bisector of the angle $BHC$ and the line $QM$, where $M$ is the midpoint of the segment $DT$, intersect at one point. (Matvsh Kursky)

Estonia Open Senior - geometry, 2010.1.4

Circle $c$ passes through vertices $A$ and $B$ of an isosceles triangle $ABC$, whereby line $AC$ is tangent to it. Prove that circle $c$ passes through the circumcenter or the incenter or the orthocenter of triangle $ABC$.

2014 Oral Moscow Geometry Olympiad, 4

The medians $AA_0, BB_0$, and $CC_0$ of the acute-angled triangle $ABC$ intersect at the point $M$, and heights $AA_1, BB_1$ and $CC_1$ at point $H$. Tangent to the circumscribed circle of triangle $A_1B_1C_1$ at $C_1$ intersects the line $A_0B_0$ at the point $C'$. Points $A'$ and $B'$ are defined similarly. Prove that $A', B'$ and $C'$ lie on one line perpendicular to the line $MH$.

Estonia Open Junior - geometry, 2015.2.5

Let $ABC$ be an acute-angled triangle, $H$ the intersection point of its altitudes , and $AA'$ the diameter of the circumcircle of triangle $ABC$. Prove that the quadrilateral $HB A'C$ is a parallelogram.

2018 Bosnia and Herzegovina Team Selection Test, 1

In acute triangle $ABC$ $(AB < AC)$ let $D$, $E$ and $F$ be foots of perpedicular from $A$, $B$ and $C$ to $BC$, $CA$ and $AB$, respectively. Let $P$ and $Q$ be points on line $EF$ such that $DP \perp EF$ and $BQ=CQ$. Prove that $\angle ADP = \angle PBQ$

Kyiv City MO Seniors 2003+ geometry, 2022.11.3

Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$. [i](Proposed by Oleksii Masalitin)[/i]

2016 Balkan MO Shortlist, G3

Given that $ABC$ is a triangle where $AB < AC$. On the half-lines $BA$ and $CA$ we take points $F$ and $E$ respectively such that $BF = CE = BC$. Let $M,N$ and $H$ be the mid-points of the segments $BF,CE$ and $BC$ respectively and $K$ and $O$ be the circumcenters of the triangles $ABC$ and $MNH$ respectively. We assume that $OK$ cuts $BE$ and $HN$ at the points $A_1$ and $B_1$ respectively and that $C_1$ is the point of intersection of $HN$ and $FE$. If the parallel line from $A_1$ to $OC_1$ cuts the line $FE$ at $D$ and the perpendicular from $A_1$ to the line $DB_1$ cuts $FE$ at the point $M_1$, prove that $E$ is the orthocenter of the triangle $A_1OM_1$.

Kyiv City MO Seniors 2003+ geometry, 2010.11.3

The quadrilateral $ABCD$ is inscribed in a circle and has perpendicular diagonals. Points $K,L,M,Q$ are the points of intersection of the altitudes of the triangles $ABD, ACD, BCD, ABC$, respectively. Prove that the quadrilateral $KLMQ$ is equal to the quadrilateral $ABCD$. (Rozhkova Maria)

2024 Belarus Team Selection Test, 1.2

An acute-angled triangle $ABC$ with an altitude $AD$ and orthocenter $H$ are given. $AD$ intersects the circumcircle of $ABC$ $\omega$ at $P$. $K$ is a point on segment $BC$ such that $KC=BD$. The circumcircle of $KPH$ intersects $\omega$ at $Q$ and $BC$ at $N$. A line perpendicular to $PQ$ and passing through $N$ intersects $AD$ at $T$. Prove that the center of $\omega$ lies on line $TK$. [i]U. Maksimenkau[/i]

2020 ELMO Problems, P3

Janabel has a device that, when given two distinct points $U$ and $V$ in the plane, draws the perpendicular bisector of $UV$. Show that if three lines forming a triangle are drawn, Janabel can mark the orthocenter of the triangle using this device, a pencil, and no other tools. [i]Proposed by Fedir Yudin.[/i]

2003 Estonia Team Selection Test, 6

Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ . (J. Willemson)

2019 Ukraine Team Selection Test, 3

Given an acute triangle $ABC$ . It's altitudes $AA_1 , BB_1$ and $CC_1$ intersect at a point $H$ , the orthocenter of $\vartriangle ABC$. Let the lines $B_1C_1$ and $AA_1$ intersect at a point $K$, point $M$ be the midpoint of the segment $AH$. Prove that the circumscribed circle of $\vartriangle MKB_1$ touches the circumscribed circle of $\vartriangle ABC$ if and only if $BA1 = 3A1C$. (Bondarenko Mykhailo)

Geometry Mathley 2011-12, 12.1

Let $ABC$ be an acute triangle with orthocenter $H$, and $P$ a point interior to the triangle. Points $D,E,F$ are the reflections of $P$ about $BC,CA,AB$. If $Q$ is the intersection of $HD$ and $EF$, prove that the ratio $HQ/HD$ is independent of the choice of $P$. Luis González

2012 Danube Mathematical Competition, 2

Let $ABC$ be an acute triangle and let $A_1$, $B_1$, $C_1$ be points on the sides $BC, CA$ and $AB$, respectively. Show that the triangles $ABC$ and $A_1B_1C_1$ are similar ($\angle A = \angle A_1, \angle B = \angle B_1,\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle $ABC$ coincide.

2012 Oral Moscow Geometry Olympiad, 5

Given a circle and a chord $AB$, different from the diameter. Point $C$ moves along the large arc $AB$. The circle passing through passing through points $A, C$ and point $H$ of intersection of altitudes of of the triangle $ABC$, re-intersects the line $BC$ at point $P$. Prove that line $PH$ passes through a fixed point independent of the position of point $C$.

2024 Turkey Team Selection Test, 5

In a scalene triangle $ABC$, $H$ is the orthocenter, and $G$ is the centroid. Let $A_b$ and $A_c$ be points on $AB$ and $AC$, respectively, such that $B$, $C$, $A_b$, $A_c$ are cyclic, and the points $A_b$, $A_c$, $H$ are collinear. $O_a$ is the circumcenter of the triangle $AA_bA_c$. $O_b$ and $O_c$ are defined similarly. Prove that the centroid of the triangle $O_aO_bO_c$ lies on the line $HG$.

Swiss NMO - geometry, 2007.4

Let $ABC$ be an acute-angled triangle with $AB> AC$ and orthocenter $H$. Let $D$ the projection of $A$ on $BC$. Let $E$ be the reflection of $C$ wrt $D$. The lines $AE$ and $BH$ intersect at point $S$. Let $N$ be the midpoint of $AE$ and let $M$ be the midpoint of $BH$. Prove that $MN$ is perpendicular to $DS$.

2019 Tournament Of Towns, 2

Let $ABC$ be an acute triangle. Suppose the points $A',B',C'$ lie on its sides $BC,AC,AB$ respectively and the segments $AA',BB',CC'$ intersect in a common point $P$ inside the triangle. For each of those segments let us consider the circle such that the segment is its diameter, and the chord of this circle that contains the point $P$ and is perpendicular to this diameter. All three these chords occurred to have the same length. Prove that $P$ is the orthocenter of the triangle $ABC$. (Grigory Galperin)

2014 Balkan MO Shortlist, G7

Let $I$ be the incenter of $\triangle ABC$ and let $H_a$, $H_b$, and $H_c$ be the orthocenters of $\triangle BIC$ , $\triangle CIA$, and $\triangle AIB$, respectively. The lines $H_aH_b$ meets $AB$ at $X$ and the line $H_aH_c$ meets $AC$ at $Y$. If the midpoint $T$ of the median $AM$ of $\triangle ABC$ lies on $XY$, prove that the line $H_aT$ is perpendicular to $BC$

2022 Novosibirsk Oral Olympiad in Geometry, 7

Altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ intersect at point $H$. A straight line passing through point $H$ parallel to line $A_1C_1$ intersects the circumscribed circles of triangles $AHC_1$ and $CHA_1$ at points $X$ and $Y$, respectively. Prove that points $X$ and $Y$ are equidistant from the midpoint of segment $BH$.

2017 Pan-African Shortlist, G?

Let $ABC$ be a triangle with $H$ its orthocenter. The circle with diameter $[AC]$ cuts the circumcircle of triangle $ABH$ at $K$. Prove that the point of intersection of the lines $CK$ and $BH$ is the midpoint of the segment $[BH]$

2020 China Northern MO, BP4

In $\triangle ABC$, $\angle BAC = 60^{\circ}$, point $D$ lies on side $BC$, $O_1$ and $O_2$ are the centers of the circumcircles of $\triangle ABD$ and $\triangle ACD$, respectively. Lines $BO_1$ and $CO_2$ intersect at point $P$. If $I$ is the incenter of $\triangle ABC$ and $H$ is the orthocenter of $\triangle PBC$, then prove that the four points $B,C,I,H$ are on the same circle.