This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

2024 Yasinsky Geometry Olympiad, 4

Let \( I \) and \( M \) be the incenter and the centroid of a scalene triangle \( ABC \), respectively. A line passing through point \( I \) parallel to \( BC \) intersects \( AC \) and \( AB \) at points \( E \) and \( F \), respectively. Reconstruct triangle \( ABC \) given only the marked points \( E, F, I, \) and \( M \). [i]Proposed by Hryhorii Filippovskyi[/i]

2006 MOP Homework, 6

Tags: parallel , angle , geometry
In triangle $ABC, AB \ne AC$. Circle $\omega$ passes through $A$ and meets sides $AB$ and $AC$ at $M$ and $N$, respectively, and the side $BC$ at $P$ and $Q$ such that $Q$ lies in between $B$ and $P$. Suppose that $MP // AC, NQ // AB$, and $BP \cdot AC = CQ \cdot AB$. Find $\angle BAC$.

Denmark (Mohr) - geometry, 1998.3

The points lie on three parallel lines with distances as indicated in the figure $A, B$ and $C$ such that square $ABCD$ is a square. Find the area of this square. [img]https://1.bp.blogspot.com/-xeFvahqPVyM/XzcFfB0-NfI/AAAAAAAAMYA/SV2XU59uBpo_K99ZBY43KSSOKe-veOdFQCLcBGAsYHQ/s0/1998%2BMohr%2Bp3.png[/img]

1979 Dutch Mathematical Olympiad, 4

Given is the non-equilateral triangle $A_1A_2A_3$. $B_{ij}$ is the symmetric of $A_i$ wrt the inner bisector of $\angle A_j$. Prove that lines $B_{12}B_{21}$, $B_{13}B_{31}$ and $B_{23}B_{32}$ are parallel.

2018 BAMO, D/2

Let points $P_1, P_2, P_3$, and $P_4$ be arranged around a circle in that order. (One possible example is drawn in Diagram 1.) Next draw a line through $P_4$ parallel to $P_1P_2$, intersecting the circle again at $P_5$. (If the line happens to be tangent to the circle, we simply take $P_5 =P_4$, as in Diagram 2. In other words, we consider the second intersection to be the point of tangency again.) Repeat this process twice more, drawing a line through $P_5$ parallel to $P_2P_3$, intersecting the circle again at $P_6$, and finally drawing a line through $P_6$ parallel to $P_3P_4$, intersecting the circle again at $P_7$. Prove that $P_7$ is the same point as $P_1$. [img]https://cdn.artofproblemsolving.com/attachments/5/7/fa8c1b88f78c09c3afad2c33b50c2be4635a73.png[/img]

2012 Cuba MO, 2

Tags: geometry , parallel
Given the triangle $ABC$, let $L$, $M$ and $N $be the midpoints of $BC$, $CA$ and $AB$ respectively. The lines $LM$ and $LN$ cut the tangent to the circumcircle at $A$ at $P$ and $Q$ respectively . Prove that $CP \parallel BQ$.

2013 Tournament of Towns, 5

A point in the plane is called a node if both its coordinates are integers. Consider a triangle with vertices at nodes containing exactly two nodes inside. Prove that the straight line connecting these nodes either passes through a vertex or is parallel to a side of the triangle.

2015 Dutch IMO TST, 4

Let $\Gamma_1$ and $\Gamma_2$ be circles - with respective centres $O_1$ and $O_2$ - that intersect each other in $A$ and $B$. The line $O_1A$ intersects $\Gamma_2$ in $A$ and $C$ and the line $O_2A$ intersects $\Gamma_1$ in $A$ and $D$. The line through $B$ parallel to $AD$ intersects $\Gamma_1$ in $B$ and $E$. Suppose that $O_1A$ is parallel to $DE$. Show that $CD$ is perpendicular to $O_2C$.

2021 Indonesia TST, G

The circles $k_1$ and $k_2$ intersect at points $A$ and $B$, and $k_1$ passes through the center $O$ of the circle $k_2$. The line $p$ intersects $k_1$ at the points $K ,O$ and $k_2$ at the points $L ,M$ so that $L$ lies between $K$ and $O$. The point $P$ is the projection of $L$ on the line $AB$. Prove that $KP$ is parallel to the median of triangle $ABM$ drawn from the vertex $M$.

1998 Austrian-Polish Competition, 6

Different points $A,B,C,D,E,F$ lie on circle $k$ in this order. The tangents to $k$ in the points $A$ and $D$ and the lines $BF$ and $CE$ have a common point $P$. Prove that the lines $AD,BC$ and $EF$ also have a common point or are parallel.

2015 German National Olympiad, 5

Let $ABCD$ be a convex quadrilateral such that the circle with diameter $AB$ touches the line $CD$. Prove that that the circle with diameter $CD$ touches the line $AB$ if and only if $BC$ and $AD$ are parallel.

2023 Dutch Mathematical Olympiad, 4

In acute-angled triangle $ABC$ with $|BC| < |BA|$, point $N$ is the midpoint of $AC$. The circle with diameter $AB$ intersects the bisector of $\angle B$ in two points: $B$ and $X$. Prove that $XN$ is parallel to $BC$. [img]https://cdn.artofproblemsolving.com/attachments/5/1/f0ae8f5df8f2cc1bb80de1ee1807dc845a87b3.png[/img]

2013 Tournament of Towns, 3

A point in the plane is called a node if both its coordinates are integers. Consider a triangle with vertices at nodes containing at least two nodes inside. Prove that there exists a pair of internal nodes such that a straight line connecting them either passes through a vertex or is parallel to side of the triangle.

2022 USEMO, 4

Tags: geometry , parallel
Let $ABCD$ be a cyclic quadrilateral whose opposite sides are not parallel. Suppose points $P, Q, R, S$ lie in the interiors of segments $AB, BC, CD, DA,$ respectively, such that $$\angle PDA = \angle PCB, \text{ } \angle QAB = \angle QDC, \text{ } \angle RBC = \angle RAD, \text{ and } \angle SCD = \angle SBA.$$ Let $AQ$ intersect $BS$ at $X$, and $DQ$ intersect $CS$ at $Y$. Prove that lines $PR$ and $XY$ are either parallel or coincide. [i]Tilek Askerbekov[/i]

2013 Dutch Mathematical Olympiad, 3

The sides $BC$ and $AD$ of a quadrilateral $ABCD$ are parallel and the diagonals intersect in $O$. For this quadrilateral $|CD| =|AO|$ and $|BC| = |OD|$ hold. Furthermore $CA$ is the angular bisector of angle $BCD$. Determine the size of angle $ABC$. [asy] unitsize(1 cm); pair A, B, C, D, O; D = (0,0); B = 3*dir(180 + 72); C = 3*dir(180 + 72 + 36); A = extension(D, D + (1,0), C, C + dir(180 - 36)); O = extension(A, C, B, D); draw(A--B--C--D--cycle); draw(B--D); draw(A--C); dot("$A$", A, N); dot("$B$", B, SW); dot("$C$", C, SE); dot("$D$", D, N); dot("$O$", O, E); [/asy] Attention: the figure is not drawn to scale.

Durer Math Competition CD Finals - geometry, 2017.C+1

Given a plane with two circles, one with points $A$ and $B$, and the other with points $C$ and $D$ are shown in the figure. The line $AB$ passes through the center of the first circle and touches the second circle while the line $CD$ passes through the center of the second circle and touches the first circle. Prove that the lines $AD$ and $BC$ are parallel. [img]https://cdn.artofproblemsolving.com/attachments/e/e/92f7b57751e7828a6487a052d4869e27e658b2.png[/img]

2018 Hanoi Open Mathematics Competitions, 12

Let $ABC$ be an acute triangle with $AB < AC$, and let $BE$ and $CF$ be the altitudes. Let the median $AM$ intersect $BE$ at point $P$, and let line $CP$ intersect $AB$ at point $D$ (see Figure 2). Prove that $DE \parallel BC$, and $AC$ is tangent to the circumcircle of $\vartriangle DEF$. [img]https://cdn.artofproblemsolving.com/attachments/f/7/bbad9f6019a77c6aa46c3a821857f06233cb93.png[/img]

2015 Latvia Baltic Way TST, 5

$BE$ is the altitude of acute triangle $ABC$. The line $\ell$ touches the circumscribed circle of the triangle $ABC$ at point $B$. A perpendicular $CF$ is drawn from $C$ on line $\ell$. Prove that the lines $EF$ and $AB$ are parallel.

2006 Sharygin Geometry Olympiad, 18

Two perpendicular lines are drawn through the orthocenter $H$ of triangle $ABC$, one of which intersects $BC$ at point $X$, and the other intersects $AC$ at point $Y$. Lines $AZ, BZ$ are parallel, respectively with $HX$ and $HY$. Prove that the points $X, Y, Z$ lie on the same line.

Kyiv City MO Juniors Round2 2010+ geometry, 2013.8.3

Inside $\angle BAC = 45 {} ^ \circ$ the point $P$ is selected that the conditions $\angle APB = \angle APC = 45 {} ^ \circ $ are fulfilled. Let the points $M$ and $N$ be the projections of the point $P$ on the lines $AB$ and $AC$, respectively. Prove that $BC\parallel MN $. (Serdyuk Nazar)

2006 Sharygin Geometry Olympiad, 13

Two straight lines $a$ and $b$ are given and also points $A$ and $B$. Point $X$ slides along the line $a$, and point $Y$ slides along the line $b$, so that $AX \parallel BY$. Find the locus of the intersection point of $AY$ with $XB$.

2017 Latvia Baltic Way TST, 9

In an isosceles triangle $ABC$ in which $AC = BC$ and $\angle ABC < 60^o$, $I$ and $O$ are the centers of the inscribed and circumscribed circles, respectively. For the triangle $BIO$, the circumscribed circle intersects the side $BC$ again at $D$. Prove that: i) lines $AC$ and $DI$ are parallel, ii) lines $OD$ and $IB$ are perpendicular.

2002 Singapore Team Selection Test, 1

Let $A, B, C, D, E$ be five distinct points on a circle $\Gamma$ in the clockwise order and let the extensions of $CD$ and $AE$ meet at a point $Y$ outside $\Gamma$. Suppose $X$ is a point on the extension of $AC$ such that $XB$ is tangent to $\Gamma$ at $B$. Prove that $XY = XB$ if and only if $XY$ is parallel $DE$.

2009 Moldova National Olympiad, 8.3

The circle $C_1$ of center $O$ and the circle $C_2$ intersect at points $A$ and $B$, so that point $O$ lies on circle $C_2$. The lines $d$ and $e$ are tangent at point $A$ to the circles $C_1$ and $C_2$ respectively. If the line $e$ intersects the circle $C_1$ at point $D$, prove that the lines $BD$ and $d$ are parallel.

Novosibirsk Oral Geo Oly IX, 2021.7

A circle concentric with the inscribed circle of $ABC$ intersects the sides of the triangle at six points forming a convex hexagon $A_1A_2B_1B_2C_1C_2$ (points $C_1$ and $C_2$ on the $AB$ side, $A_1$ and $A_2$ on $BC$, $B_1$ and $B_2$ on $AC$). Prove that if line $A_1B_1$ is parallel to the bisector of angle $B$, then line $A_2C_2$ is parallel to the bisector of angle $C$.