This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2013 India IMO Training Camp, 2

In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.

2014 Oral Moscow Geometry Olympiad, 2

Let $ABCD$ be a parallelogram. On side $AB$, point $M$ is taken so that $AD = DM$. On side $AD$ point $N$ is taken so that $AB = BN$. Prove that $CM = CN$.

2000 India National Olympiad, 1

The incircle of $ABC$ touches $BC$, $CA$, $AB$ at $K$, $L$, $M$ respectively. The line through $A$ parallel to $LK$ meets $MK$ at $P$, and the line through $A$ parallel to $MK$ meets $LK$ at $Q$. Show that the line $PQ$ bisects $AB$ and bisects $AC$.

1954 Poland - Second Round, 5

Given points $ A $, $ B $, $ C $ and $ D $ that do not lie in the same plane. Draw a plane through the point $ A $ such that the orthogonal projection of the quadrilateral $ ABCD $ on this plane is a parallelogram.

2006 Germany Team Selection Test, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2016 PAMO, 6

Consider an $n\times{n}$ grid formed by $n^2$ unit squares. We define the centre of a unit square as the intersection of its diagonals. Find the smallest integer $m$ such that, choosing any $m$ unit squares in the grid, we always get four unit squares among them whose centres are vertices of a parallelogram.

1989 Romania Team Selection Test, 3

Let $ABCD$ be a parallelogram and $M,N$ be points in the plane such that $C \in (AM)$ and $D \in (BN)$. Lines $NA,NC$ meet lines $MB,MD$ at points $E,F,G,H$. Show that points $E,F,G,H$ lie on a circle if and only if $ABCD$ is a rhombus.

2010 Polish MO Finals, 3

$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.

2001 Mediterranean Mathematics Olympiad, 1

Let $P$ and $Q$ be points on a circle $k$. A chord $AC$ of $k$ passes through the midpoint $M$ of $PQ$. Consider a trapezoid $ABCD$ inscribed in $k$ with $AB \parallel PQ \parallel CD$. Prove that the intersection point $X$ of $AD$ and $BC$ depends only on $k$ and $P,Q.$

2005 IMO Shortlist, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

Indonesia MO Shortlist - geometry, g9

It is known that $ABCD$ is a parallelogram. The point $E$ is taken so that $BCED$ is a cyclic quadrilateral. Let $\ell$ be a line that passes through $A$, intersects the segment $DC$ at point $F$ and intersects the extension of the line $BC$ at $G$. Given $EF = EG = EC$. Prove that $\ell$ is the bisector of the angle $\angle BAD$.

2005 Oral Moscow Geometry Olympiad, 2

A parallelogram of $ABCD$ is given. Line parallel to $AB$ intersects the bisectors of angles $A$ and $C$ at points $P$ and $Q$, respectively. Prove that the angles $ADP$ and $ABQ$ are equal. (A. Hakobyan)

2008 Sharygin Geometry Olympiad, 2

(A.Myakishev) Let triangle $ A_1B_1C_1$ be symmetric to $ ABC$ wrt the incenter of its medial triangle. Prove that the orthocenter of $ A_1B_1C_1$ coincides with the circumcenter of the triangle formed by the excenters of $ ABC$.

2006 Cono Sur Olympiad, 1

Let $ABCD$ be a convex quadrilateral, let $E$ and $F$ be the midpoints of the sides $AD$ and $BC$, respectively. The segment $CE$ meets $DF$ in $O$. Show that if the lines $AO$ and $BO$ divide the side $CD$ in 3 equal parts, then $ABCD$ is a parallelogram.

2024 Harvard-MIT Mathematics Tournament, 9

Let $ABC$ be a triangle. Let $X$ be the point on side $AB$ such that $\angle{BXC} = 60^{\circ}$. Let $P$ be the point on segment $CX$ such that $BP\bot AC$. Given that $AB = 6, AC = 7,$ and $BP = 4,$ compute $CP$.

2008 Oral Moscow Geometry Olympiad, 3

Given a quadrilateral $ABCD$. $A ', B', C'$ and $D'$ are the midpoints of the sides $BC, CB, BA$ and $AB$, respectively. It is known that $AA'= CC'$, $BB'= DD'$. Is it true that $ABCD$ is a parallelogram? (M. Volchkevich)

2006 Mediterranean Mathematics Olympiad, 2

Let $P$ be a point inside a triangle $ABC$, and $A_1B_2,B_1C_2,C_1A_2$ be segments passing through $P$ and parallel to $AB, BC, CA$ respectively, where points $A_1, A_2$ lie on $BC, B_1, B_2$ on $CA$, and $C_1,C_2$ on $AB$. Prove that \[ \text{Area}(A_1A_2B_1B_2C_1C_2) \ge \frac{1}{2}\text{Area}(ABC)\]

2009 Sharygin Geometry Olympiad, 21

The opposite sidelines of quadrilateral $ ABCD$ intersect at points $ P$ and $ Q$. Two lines passing through these points meet the side of $ ABCD$ in four points which are the vertices of a parallelogram. Prove that the center of this parallelogram lies on the line passing through the midpoints of diagonals of $ ABCD$.

2010 Moldova Team Selection Test, 3

Let $ ABC$ be an acute triangle. $ H$ is the orthocenter and $ M$ is the middle of the side $ BC$. A line passing through $ H$ and perpendicular to $ HM$ intersect the segment $ AB$ and $ AC$ in $ P$ and $ Q$. Prove that $ MP \equal{} MQ$

2014 Contests, 1

Let $ABC$ be an acute triangle, and let $X$ be a variable interior point on the minor arc $BC$ of its circumcircle. Let $P$ and $Q$ be the feet of the perpendiculars from $X$ to lines $CA$ and $CB$, respectively. Let $R$ be the intersection of line $PQ$ and the perpendicular from $B$ to $AC$. Let $\ell$ be the line through $P$ parallel to $XR$. Prove that as $X$ varies along minor arc $BC$, the line $\ell$ always passes through a fixed point. (Specifically: prove that there is a point $F$, determined by triangle $ABC$, such that no matter where $X$ is on arc $BC$, line $\ell$ passes through $F$.) [i]Robert Simson et al.[/i]

1983 IMO Longlists, 8

On the sides of the triangle $ABC$, three similar isosceles triangles $ABP \ (AP = PB)$, $AQC \ (AQ = QC)$, and $BRC \ (BR = RC)$ are constructed. The first two are constructed externally to the triangle $ABC$, but the third is placed in the same half-plane determined by the line $BC$ as the triangle $ABC$. Prove that $APRQ$ is a parallelogram.

2013 Baltic Way, 14

Circles $\alpha$ and $\beta$ of the same radius intersect in two points, one of which is $P$. Denote by $A$ and $B$, respectively, the points diametrically opposite to $P$ on each of $\alpha$ and $\beta$ . A third circle of the same radius passes through $P$ and intersects $\alpha$ and $\beta$ in the points $X$ and $Y$ , respectively. Show that the line $XY$ is parallel to the line $AB$.

2013 Uzbekistan National Olympiad, 4

Let circles $ \Gamma $ and $ \omega $ are circumcircle and incircle of the triangle $ABC$, the incircle touches sides $BC,CA,AB$ at the points $A_1,B_1,C_1$. Let $A_2$ and $B_2$ lies the lines $A_1I$ and $B_1I$ ($A_1$ and $A_2$ lies different sides from $I$, $B_1$ and $B_2$ lies different sides from $I$) such that $IA_2=IB_2=R$. Prove that : (a) $AA_2=BB_2=IO$; (b) The lines $AA_2$ and $BB_2$ intersect on the circle $ \Gamma ;$

2013 IFYM, Sozopol, 8

Let $P$ be a polygon that is convex and symmetric to some point $O$. Prove that for some parallelogram $R$ satisfying $P\subset R$ we have \[\frac{|R|}{|P|}\leq \sqrt 2\] where $|R|$ and $|P|$ denote the area of the sets $R$ and $P$, respectively. [i]Proposed by Witold Szczechla, Poland[/i]

2025 Belarusian National Olympiad, 8.8

On the side $CD$ of parallelogram $ABCD$ a point $E$ is chosen. The perpendicular from $C$ to $BE$ and the perpendicular from $D$ to $AE$ intersect at $P$. Point $M$ is the midpoint of $PE$. Prove that the perpendicular from $M$ to $CD$ passes through the center of parallelogram $ABCD$. [i]Matsvei Zorka[/i]