This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

1988 IMO Longlists, 8

In a given tedrahedron $ ABCD$ let $ K$ and $ L$ be the centres of edges $ AB$ and $ CD$ respectively. Prove that every plane that contains the line $ KL$ divides the tedrahedron into two parts of equal volume.

1997 All-Russian Olympiad, 3

The incircle of triangle $ABC$ touches sides $AB$;$BC$;$CA$ at $M$;$N$;$K$, respectively. The line through $A$ parallel to $NK$ meets $MN$ at $D$. The line through $A$ parallel to $MN$ meets $NK$ at $E$. Show that the line $DE$ bisects sides $AB$ and $AC$ of triangle $ABC$. [i]M. Sonkin[/i]

2007 Indonesia TST, 1

Call an $n$-gon to be [i]lattice[/i] if its vertices are lattice points. Prove that inside every lattice convex pentagon there exists a lattice point.

2014 Contests, 3

A regular hexagon with side length $1$ is given. Using a ruler construct points in such a way that among the given and constructed points there are two such points that the distance between them is $\sqrt7$. Notes: ''Using a ruler construct points $\ldots$'' means: Newly constructed points arise only as the intersection of straight lines connecting two points that are given or already constructed. In particular, no length can be measured by the ruler.

2006 District Olympiad, 3

Let $ABCD$ be a convex quadrilateral, $M$ the midpoint of $AB$, $N$ the midpoint of $BC$, $E$ the intersection of the segments $AN$ and $BD$, $F$ the intersection of the segments $DM$ and $AC$. Prove that if $BE = \frac 13 BD$ and $AF = \frac 13 AC$, then $ABCD$ is a parallelogram.

2008 Regional Olympiad of Mexico Northeast, 1

Let $ABCD$ be a parallelogram, $E$ a point on the line $AB$, beyond $B, F$ a point on the line $AD$, beyond $D$, and $K$ the point of intersection of the lines $ED$ and $BF$. Prove that quadrilaterals $ABKD$ and $CEKF$ have the same area.

1997 Iran MO (3rd Round), 2

Let $ABC$ and $XYZ$ be two triangles. Define \[A_1=BC\cap ZX, A_2=BC\cap XY,\]\[B_1=CA\cap XY, B_2=CA\cap YZ,\]\[C_1=AB\cap YZ, C_2=AB\cap ZX.\] Hereby, the abbreviation $g\cap h$ means the point of intersection of two lines $g$ and $h$. Prove that $\frac{C_1C_2}{AB}=\frac{A_1A_2}{BC}=\frac{B_1B_2}{CA}$ holds if and only if $\frac{A_1C_2}{XZ}=\frac{C_1B_2}{ZY}=\frac{B_1A_2}{YX}$.

2005 Rioplatense Mathematical Olympiad, Level 3, 2

In trapezoid $ABCD$, the sum of the lengths of the bases $AB$ and $CD$ is equal to the length of the diagonal $BD$. Let $M$ denote the midpoint of $BC$, and let $E$ denote the reflection of $C$ about the line $DM$. Prove that $\angle AEB=\angle ACD$.

2011 China Team Selection Test, 1

Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.

2012 France Team Selection Test, 3

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

2019 BAMO, B

In the figure below, parallelograms $ABCD$ and $BFEC$ have areas $1234$ cm$^2$ and $2804$ cm$^2$, respectively. Points $M$ and $N$ are chosen on sides $AD$ and $FE$, respectively, so that segment $MN$ passes through $B$. Find the area of $\vartriangle MNC$. [img]https://cdn.artofproblemsolving.com/attachments/b/6/8b57b632191bdb3a27ab7c59e2376dab23950b.png[/img]

2018 South East Mathematical Olympiad, 3

Let $O$ be the circumcenter of $\triangle ABC$, where $\angle ABC> 90^{\circ}$ and $M$ is the midpoint of $BC$. Point $P$ lies inside $\triangle ABC$ such that $PB\perp PC$. $D,E$ distinct from $P$ lies on the perpendicular to $AP$ through $P$ such that $BD=BP, CE=CP$. If quadrilateral $ADOE$ is a parallelogram, prove that $$\angle OPE = \angle AMB.$$

2017 Romania National Olympiad, 3

In the square $ABCD$ denote by $M$ the midpoint of the side $[AB]$, with $P$ the projection of point $B$ on the line $CM$ and with $N$ the midpoint of the segment $[CP]$, Bisector of the angle $DAN$ intersects the line $DP$ at point $Q$. Show that the quadrilateral $BMQN$ is a parallelogram.

2006 Peru IMO TST, 4

[color=blue][size=150]PERU TST IMO - 2006[/size] Saturday, may 20.[/color] [b]Question 04[/b] In an actue-angled triangle $ABC$ draws up: its circumcircle $w$ with center $O$, the circumcircle $w_1$ of the triangle $AOC$ and the diameter $OQ$ of $w_1$. The points are chosen $M$ and $N$ on the straight lines $AQ$ and $AC$, respectively, in such a way that the quadrilateral $AMBN$ is a parallelogram. Prove that the intersection point of the straight lines $MN$ and $BQ$ belongs the circumference $w_1.$ --- [url=http://www.mathlinks.ro/Forum/viewtopic.php?t=88513]Spanish version[/url] $\text{\LaTeX}{}$ed by carlosbr

2014 Korea Junior Math Olympiad, 7

In a parallelogram $\Box ABCD$ $(AB < BC)$ The incircle of $\triangle ABC$ meets $\overline {BC}$ and $\overline {CA}$ at $P, Q$. The incircle of $\triangle ACD$ and $\overline {CD}$ meets at $R$. Let $S$ = $PQ$ $\cap$ $AD$ $U$ = $AR$ $\cap$ $CS$ $T$, a point on $\overline {BC}$ such that $\overline {AB} = \overline {BT}$ Prove that $AT, BU, PQ$ are concurrent

2009 Germany Team Selection Test, 3

Let $ A,B,C,M$ points in the plane and no three of them are on a line. And let $ A',B',C'$ points such that $ MAC'B, MBA'C$ and $ MCB'A$ are parallelograms: (a) Show that \[ \overline{MA} \plus{} \overline{MB} \plus{} \overline{MC} < \overline{AA'} \plus{} \overline{BB'} \plus{} \overline{CC'}.\] (b) Assume segments $ AA', BB'$ and $ CC'$ have the same length. Show that $ 2 \left(\overline{MA} \plus{} \overline{MB} \plus{} \overline{MC} \right) \leq \overline{AA'} \plus{} \overline{BB'} \plus{} \overline{CC'}.$ When do we have equality?

2010 Indonesia TST, 3

Let $ABCD$ be a convex quadrilateral with $AB$ is not parallel to $CD$. Circle $\omega_1$ with center $O_1$ passes through $A$ and $B$, and touches segment $CD$ at $P$. Circle $\omega_2$ with center $O_2$ passes through $C$ and $D$, and touches segment $AB$ at $Q$. Let $E$ and $F$ be the intersection of circles $\omega_1$ and $\omega_2$. Prove that $EF$ bisects segment $PQ$ if and only if $BC$ is parallel to $AD$.

2018 Greece National Olympiad, 4

In the plane, there are $n$ points ($n\ge 4$) where no 3 of them are collinear. Let $A(n)$ be the number of parallelograms whose vertices are those points with area $1$. Prove the following inequality: $A(n)\leq \frac{n^2-3n}{4}$ for all $n\ge 4$

2018 May Olympiad, 4

In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.

2014 USAMO, 5

Let $ABC$ be a triangle with orthocenter $H$ and let $P$ be the second intersection of the circumcircle of triangle $AHC$ with the internal bisector of the angle $\angle BAC$. Let $X$ be the circumcenter of triangle $APB$ and $Y$ the orthocenter of triangle $APC$. Prove that the length of segment $XY$ is equal to the circumradius of triangle $ABC$.

2013 IberoAmerican, 4

Let $\Gamma$ be a circunference and $O$ its center. $AE$ is a diameter of $\Gamma$ and $B$ the midpoint of one of the arcs $AE$ of $\Gamma$. The point $D \ne E$ in on the segment $OE$. The point $C$ is such that the quadrilateral $ABCD$ is a parallelogram, with $AB$ parallel to $CD$ and $BC$ parallel to $AD$. The lines $EB$ and $CD$ meets at point $F$. The line $OF$ cuts the minor arc $EB$ of $\Gamma$ at $I$. Prove that the line $EI$ is the angle bissector of $\angle BEC$.

2013 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear. [i]Proposed by Michael Kural[/i]

1989 Romania Team Selection Test, 3

(a) Find the point $M$ in the plane of triangle $ABC$ for which the sum $MA + MB+ MC$ is minimal. (b) Given a parallelogram $ABCD$ whose angles do not exceed $120^o$, determine $min \{MA+ MB+NC+ND+ MN | M,N$ are in the plane $ABCD\}$ in terms of the sides and angles of the parallelogram.

2017 JBMO Shortlist, G1

Given a parallelogram $ABCD$. The line perpendicular to $AC$ passing through $C$ and the line perpendicular to $BD$ passing through $A$ intersect at point $P$. The circle centered at point $P$ and radius $PC$ intersects the line $BC$ at point $X$, ($X \ne C$) and the line $DC$ at point $Y$ , ($Y \ne C$). Prove that the line $AX$ passes through the point $Y$ .

1986 Tournament Of Towns, (117) 5

The bisector of angle $BAD$ in the parallelogram $ABCD$ intersects the lines $BC$ and $CD$ at the points $K$ and $L$ respectively. It is known that $ABCD$ is not a rhombus. Prove that the centre of the circle passing through the points $C, K$ and $L$ lies on the circle passing through the points $B, C$ and $D$.