This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2018 Latvia Baltic Way TST, P12

Let $ABCD$ be a parallelogram. Let $X$ and $Y$ be arbitrary points on sides $BC$ and $CD$, respectively. Segments $BY$ and $DX$ intersect at $P$. Prove that the line going through the midpoints of segments $BD$ and $XY$ is either parallel to or coincides with line $AP$.

1967 IMO, 1

The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only \[a\le\cos A+\sqrt3\sin A.\]

2013 Serbia National Math Olympiad, 5

Let $A'$ and $B'$ be feet of altitudes from $A$ and $B$, respectively, in acute-angled triangle $ABC$ ($AC\not = BC$). Circle $k$ contains points $A'$ and $B'$ and touches segment $AB$ in $D$. If triangles $ADA'$ and $BDB'$ have the same area, prove that \[\angle A'DB'= \angle ACB.\]

2020 Latvia TST, 1.4

It is given isosceles triangle $ABC$ with $AB = AC$. $AD$ is diameter of circumcircle of triangle $ABC$. On the side $BC$ is chosen point $E$. On the sides $AC, AB$ there are points $F, G$ respectively such that $AFEG$ is parallelogram. Prove that $DE$ is perpendicular to $FG$.

2019 CCA Math Bonanza, L2.4

Let $ABCD$ be a parallelogram. Let $G,H$ be the feet of the altitudes from $A$ to $CD$ and $BC$ respectively. If $AD=15$, $AG=12$, and $AH=16$, find the length of $AB$. [i]2019 CCA Math Bonanza Lightning Round #2.4[/i]

2005 Estonia National Olympiad, 4

In a fixed plane, consider a convex quadrilateral $ABCD$. Choose a point $O$ in the plane and let $K, L, M$, and $N$ be the circumcentres of triangles $AOB, BOC, COD$, and $DOA$, respectively. Prove that there exists exactly one point $O$ in the plane such that $KLMN$ is a parallelogram.

2024 Bundeswettbewerb Mathematik, 3

Let $ABCD$ be a parallelogram whose diagonals intersect in $M$. Suppose that the circumcircle of $ABM$ intersects the segment $AD$ in a point $E \ne A$ and that the circumcircle of $EMD$ intersects the segment $BE$ in a point $F \ne E$. Show that $\angle ACB=\angle DCF$.

2011 India IMO Training Camp, 1

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

2017 NZMOC Camp Selection Problems, 2

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be the point on the line $AB$, distinct from $B$, such that $CG = CB$. Let $H$ be the point on the line $BC$, distinct from $B$, such that $AB = AH$. Prove that triangle $DGH$ is isosceles.

2022 Mexican Girls' Contest, 1

Let $ABCD$ be a quadrilateral, $E$ the midpoint of side $BC$, and $F$ the midpoint of side $AD$. Segment $AC$ intersects segment $BF$ at $M$ and segment $DE$ at $N$. If quadrilateral $MENF$ is also known to be a parallelogram, prove that $ABCD$ is also a parallelogram.

1988 IMO Shortlist, 6

In a given tedrahedron $ ABCD$ let $ K$ and $ L$ be the centres of edges $ AB$ and $ CD$ respectively. Prove that every plane that contains the line $ KL$ divides the tedrahedron into two parts of equal volume.

2007 Korea - Final Round, 1

Let $ O$ be the circumcenter of an acute triangle $ ABC$ and let $ k$ be the circle with center $ P$ that is tangent to $ O$ at $ A$ and tangent to side $ BC$ at $ D$. Circle $ k$ meets $ AB$ and $ AC$ again at $ E$ and $ F$ respectively. The lines $ OP$ and $ EP$ meet $ k$ again at $ I$ and $ G$. Lines $ BO$ and $ IG$ intersect at $ H$. Prove that $ \frac{{DF}^2}{AF}\equal{}GH$.

2010 Federal Competition For Advanced Students, Part 1, 4

The the parallel lines through an inner point $P$ of triangle $\triangle ABC$ split the triangle into three parallelograms and three triangles adjacent to the sides of $\triangle ABC$. (a) Show that if $P$ is the incenter, the perimeter of each of the three small triangles equals the length of the adjacent side. (b) For a given triangle $\triangle ABC$, determine all inner points $P$ such that the perimeter of each of the three small triangles equals the length of the adjacent side. (c) For which inner point does the sum of the areas of the three small triangles attain a minimum? [i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 4)[/i]

Cono Sur Shortlist - geometry, 1993.7

Let $ABCD$ be a convex quadrilateral, where $M$ is the midpoint of $DC$, $N$ is the midpoint of $BC$, and $O$ is the intersection of diagonals $AC$ and $BD$. Prove that $O$ is the centroid of the triangle $AMN$ if and only if $ABCD$ is a parallelogram.

Oliforum Contest I 2008, 2

Let $ ABCD$ be a cyclic quadrilateral with $ AB>CD$ and $ BC>AD$. Take points $ X$ and $ Y$ on the sides $ AB$ and $ BC$, respectively, so that $ AX\equal{}CD$ and $ AD\equal{}CY$. Let $ M$ be the midpoint of $ XY$. Prove that $ AMC$ is a right angle.

2005 Romania National Olympiad, 1

Let $ABCD$ be a parallelogram. The interior angle bisector of $\angle ADC$ intersects the line $BC$ in $E$, and the perpendicular bisector of the side $AD$ intersects the line $DE$ in $M$. Let $F= AM \cap BC$. Prove that: a) $DE=AF$; b) $AD\cdot AB = DE\cdot DM$. [i]Daniela and Marius Lobaza, Timisoara[/i]

2013 NZMOC Camp Selection Problems, 9

Let $ABC$ be a triangle with $\angle CAB > 45^o$ and $\angle CBA > 45^o$. Construct an isosceles right angled triangle $RAB$ with $AB$ as its hypotenuse and $R$ inside $ABC$. Also construct isosceles right angled triangles $ACQ$ and $BCP$ having $AC$ and $BC$ respectively as their hypotenuses and lying entirely outside $ABC$. Show that $CQRP$ is a parallelogram.

2005 China Team Selection Test, 2

Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$. (1) Prove that $F,B,C,E$ are concyclic. (2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.

2013 Macedonia National Olympiad, 5

An arbitrary triangle ABC is given. There are 2 lines, p and q, that are not parallel to each other and they are not perpendicular to the sides of the triangle. The perpendicular lines through points A, B and C to line p we denote with $ p_a, p_b, p_c $ and the perpendicular lines to line q we denote with $ q_a, q_b, q_c $. Let the intersection points of the lines $ p_a, q_a, p_b, q_b, p_c $ and $ q_c $ with $ q_b, p_b, q_c, p_c, q_a $ and $ p_a $ are $ K, L, P, Q, N $ and $ M $. Prove that $ KL, MN $ and $ PQ $ intersect in one point.

2002 Iran MO (2nd round), 3

In a convex quadrilateral $ABCD$ with $\angle ABC = \angle ADC = 135^\circ$, points $M$ and $N$ are taken on the rays $AB$ and $AD$ respectively such that $\angle MCD = \angle NCB = 90^\circ$. The circumcircles of triangles $AMN$ and $ABD$ intersect at $A$ and $K$. Prove that $AK \perp KC.$

2024 Junior Balkan Team Selection Tests - Moldova, 9

Consider the parallelograms $ABCD$ and $AXYZ$, such that $X \in $[$BC$] and $D \in $[$YZ$]. Prove that the areas of the parallelograms are equal.

1994 Chile National Olympiad, 6

On a sheet of transparent paper, draw a quadrilateral with Chinese ink, which is illuminated with a lamp. Show that it is always possible to locate the sheet in such a way that the shadow projected on the desk is a parallelogram.

2004 Estonia National Olympiad, 2

On side, $BC, AB$ of a parallelogram $ABCD$ lie points $M,N$ respectively such that $|AM| =|CN|$. Let $P$ be the intersection of $AM$ and $CN$. Prove that the angle bisector of $\angle APC$ passes through $D$.

2017 IOM, 1

Let $ABCD$ be a parallelogram in which angle at $B$ is obtuse and $AD>AB$. Points $K$ and $L$ on $AC$ such that $\angle ADL=\angle KBA$(the points $A, K, C, L$ are all different, with $K$ between $A$ and $L$). The line $BK$ intersects the circumcircle $\omega$ of $ABC$ at points $B$ and $E$, and the line $EL$ intersects $\omega$ at points $E$ and $F$. Prove that $BF||AC$.

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.