This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

1965 German National Olympiad, 3

Two parallelograms $ABCD$ and $A'B'C'D'$ are given in space. Points $A'',B'',C'',D''$ divide the segments $AA',BB',CC',DD'$ in the same ratio. What can be said about the quadrilateral $A''B''C''D''$?

1998 Romania Team Selection Test, 1

We are given an isosceles triangle $ABC$ such that $BC=a$ and $AB=BC=b$. The variable points $M\in (AC)$ and $N\in (AB)$ satisfy $a^2\cdot AM \cdot AN = b^2 \cdot BN \cdot CM$. The straight lines $BM$ and $CN$ intersect in $P$. Find the locus of the variable point $P$. [i]Dan Branzei[/i]

2004 Alexandru Myller, 2

On a non-rhombus parallelogram $ ABCD, $ the vertex $ B $ is projected on $ AC $ in the point $ E. $ The perpendicular on $ BD $ thru $ E $ intersects the lines $ BC $ and $ AB $ in $ F $ and $ G, $ respectively. Show that $ EF=EG $ if and only if $ \angle ABC=90^{\circ } . $ [i]Mircea Becheanu[/i]

1995 APMO, 4

Let $C$ be a circle with radius $R$ and centre $O$, and $S$ a fixed point in the interior of $C$. Let $AA'$ and $BB'$ be perpendicular chords through $S$. Consider the rectangles $SAMB$, $SBN'A'$, $SA'M'B'$, and $SB'NA$. Find the set of all points $M$, $N'$, $M'$, and $N$ when $A$ moves around the whole circle.

1997 Tournament Of Towns, (528) 5

$E$ is the midpoint of the side $AD$ of a parallelogram $ABCD$. $F$ is the foot of the perpendicular from the vertex $B$ to the line $CE$. Prove that $ABF$ is an isosceles triangle. (MA Bolchkevich)

2008 District Olympiad, 4

Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.

1984 Bulgaria National Olympiad, Problem 6

Let there be given a pyramid $SABCD$ whose base $ABCD$ is a parallelogram. Let $N$ be the midpoint of $BC$. A plane $\lambda$ intersects the lines $SC,SA,AB$ at points $P,Q,R$ respectively such that $\overline{CP}/\overline{CS}=\overline{SQ}/\overline{SA}=\overline{AR}/\overline{AB}$. A point $M$ on the line $SD$ is such that the line $MN$ is parallel to $\lambda$. Show that the locus of points $M$, when $\lambda$ takes all possible positions, is a segment of the length $\frac{\sqrt5}2SD$.

2011 National Olympiad First Round, 9

Let $ABCD$ be a convex quadrilateral with $m(\widehat{ADC}) = 90^{\circ}$. The line through $D$ which is parallel to $BC$ meets $AB$ at $E$. If $m(\widehat{DAC}) = m(\widehat{DAE})$, $|AB|=3$ and $|AC|=4$, then $|AE| = ?$ $\textbf{(A)}\ \frac56 \qquad\textbf{(B)}\ \frac13 \qquad\textbf{(C)}\ \frac12 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \frac34$

2013 Iran Team Selection Test, 13

$P$ is an arbitrary point inside acute triangle $ABC$. Let $A_1,B_1,C_1$ be the reflections of point $P$ with respect to sides $BC,CA,AB$. Prove that the centroid of triangle $A_1B_1C_1$ lies inside triangle $ABC$.

2005 USA Team Selection Test, 5

Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A,B,$ and $C$ in $S,$ there is a fourth point $D$ in $S$ such that $A,B,C,$ and $D$ are the vertices of a parallelogram (in some order).

2005 AIME Problems, 10

Triangle $ABC$ lies in the Cartesian Plane and has an area of 70. The coordinates of $B$ and $C$ are $(12,19)$ and $(23,20)$, respectively, and the coordinates of $A$ are $(p,q)$. The line containing the median to side $BC$ has slope $-5$. Find the largest possible value of $p+q$.

2022 Romania EGMO TST, P3

Let be given a parallelogram $ ABCD$ and two points $ A_1$, $ C_1$ on its sides $ AB$, $ BC$, respectively. Lines $ AC_1$ and $ CA_1$ meet at $ P$. Assume that the circumcircles of triangles $ AA_1P$ and $ CC_1P$ intersect at the second point $ Q$ inside triangle $ ACD$. Prove that $ \angle PDA \equal{} \angle QBA$.

Ukrainian From Tasks to Tasks - geometry, 2010.9

On the sides $AB, BC, CD$ and $DA$ of the parallelogram $ABCD$ marked the points $M, N, K$ and $F$. respectively. Is it possible to determine, using only compass, whether the area of ​​the quadrilateral $MNKF$ is equal to half the area of ​​the parallelogram $ABCD$?

1953 AMC 12/AHSME, 32

Each angle of a rectangle is trisected. The intersections of the pairs of trisectors adjacent to the same side always form: $ \textbf{(A)}\ \text{a square} \qquad\textbf{(B)}\ \text{a rectangle} \qquad\textbf{(C)}\ \text{a parallelogram with unequal sides} \\ \textbf{(D)}\ \text{a rhombus} \qquad\textbf{(E)}\ \text{a quadrilateral with no special properties}$

1997 Croatia National Olympiad, Problem 4

On the sides of a triangle $ABC$ are constructed similar triangles $ABD,BCE,CAF$ with $k=AD/DB=BE/EC=CF/FA$ and $\alpha=\angle ADB=\angle BEC=\angle CFA$. Prove that the midpoints of the segments $AC,BC,CD$ and $EF$ form a parallelogram with an angle $\alpha$ and two sides whose ratio is $k$.

2006 Iran Team Selection Test, 5

Let $ABC$ be a triangle such that it's circumcircle radius is equal to the radius of outer inscribed circle with respect to $A$. Suppose that the outer inscribed circle with respect to $A$ touches $BC,AC,AB$ at $M,N,L$. Prove that $O$ (Center of circumcircle) is the orthocenter of $MNL$.

1988 Austrian-Polish Competition, 3

In a ABCD cyclic quadrilateral 4 points K, L ,M, N are taken on AB , BC , CD and DA , respectively such that KLMN is a parallelogram. Lines AD, BC and KM have a common point. And also lines AB, DC and NL have a common point. Prove that KLMN is rhombus.

1999 AIME Problems, 8

Let $\mathcal{T}$ be the set of ordered triples $(x,y,z)$ of nonnegative real numbers that lie in the plane $x+y+z=1.$ Let us say that $(x,y,z)$ supports $(a,b,c)$ when exactly two of the following are true: $x\ge a, y\ge b, z\ge c.$ Let $\mathcal{S}$ consist of those triples in $\mathcal{T}$ that support $\left(\frac 12,\frac 13,\frac 16\right).$ The area of $\mathcal{S}$ divided by the area of $\mathcal{T}$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

1998 National High School Mathematics League, 8

Complex number $z=\cos\theta+\text{i}\sin\theta(0\leq\theta\leq\pi)$. Points that three complex numbers $z,(1+\text{i})z,2\overline{z}$ refer to on complex plane are $P,Q,R$. When $P,Q,R$ are not collinear, $PQSR$ is a parallelogram. The longest distance between $S$ and the original point is________.

2010 Contests, 1

$ABC$ is an acute angle triangle such that $AB>AC$ and $\hat{BAC}=60^{\circ}$. Let's denote by $O$ the center of the circumscribed circle of the triangle and $H$ the intersection of altitudes of this triangle. Line $OH$ intersects $AB$ in point $P$ and $AC$ in point $Q$. Find the value of the ration $\frac{PO}{HQ}$.

2004 Tuymaada Olympiad, 3

An acute triangle $ABC$ is inscribed in a circle of radius 1 with centre $O;$ all the angles of $ABC$ are greater than $45^\circ.$ $B_{1}$ is the foot of perpendicular from $B$ to $CO,$ $B_{2}$ is the foot of perpendicular from $B_{1}$ to $AC.$ Similarly, $C_{1}$ is the foot of perpendicular from $C$ to $BO,$ $C_{2}$ is the foot of perpendicular from $C_{1}$ to $AB.$ The lines $B_{1}B_{2}$ and $C_{1}C_{2}$ intersect at $A_{3}.$ The points $B_{3}$ and $C_{3}$ are defined in the same way. Find the circumradius of triangle $A_{3}B_{3}C_{3}.$ [i]Proposed by F.Bakharev, F.Petrov[/i]

1976 IMO Longlists, 5

Let $ABCDS$ be a pyramid with four faces and with $ABCD$ as a base, and let a plane $\alpha$ through the vertex $A$ meet its edges $SB$ and $SD$ at points $M$ and $N$, respectively. Prove that if the intersection of the plane $\alpha$ with the pyramid $ABCDS$ is a parallelogram, then $SM \cdot SN > BM \cdot DN$.

2020 March Advanced Contest, 3

A [i]simple polygon[/i] is a polygon whose perimeter does not self-intersect. Suppose a simple polygon $\mathcal P$ can be tiled with a finite number of parallelograms. Prove that regardless of the tiling, the sum of the areas of all rectangles in the tiling is fixed.\\ [i]Note:[/i] Points will be awarded depending on the generality of the polygons for which the result is proven.

2021 German National Olympiad, 4

Let $OFT$ and $NOT$ be two similar triangles (with the same orientation) and let $FANO$ be a parallelogram. Show that \[\vert OF\vert \cdot \vert ON\vert=\vert OA\vert \cdot \vert OT\vert.\]

1984 Poland - Second Round, 2

We construct similar isosceles triangles on the sides of the triangle $ ABC $: triangle $ APB $ outside the triangle $ ABC $ ($ AP = PB $), triangle $ CQA $ outside the triangle $ ABC $ ($ CQ = QA $), triangle $ CRB $ inside the triangle $ ABC $ ($ CR = RB $). Prove that $ APRQ $ is a parallelogram or that the points $ A, P, R, Q $ lie on a straight line.