Found problems: 663
2001 Czech-Polish-Slovak Match, 2
A triangle $ABC$ has acute angles at $A$ and $B$. Isosceles triangles $ACD$ and $BCE$ with bases $AC$ and $BC$ are constructed externally to triangle $ABC$ such that $\angle ADC = \angle ABC$ and $\angle BEC = \angle BAC$. Let $S$ be the circumcenter of $\triangle ABC$. Prove that the length of the polygonal line $DSE$ equals the perimeter of triangle $ABC$ if and only if $\angle ACB$ is right.
1997 AMC 12/AHSME, 2
The adjacent sides of the decagon shown meet at right angles. What is its perimeter?
[asy]defaultpen(linewidth(.8pt));
dotfactor=4;
dot(origin);dot((12,0));dot((12,1));dot((9,1));dot((9,7));dot((7,7));dot((7,10));dot((3,10));dot((3,8));dot((0,8));
draw(origin--(12,0)--(12,1)--(9,1)--(9,7)--(7,7)--(7,10)--(3,10)--(3,8)--(0,8)--cycle);
label("$8$",midpoint(origin--(0,8)),W);
label("$2$",midpoint((3,8)--(3,10)),W);
label("$12$",midpoint(origin--(12,0)),S);[/asy]$ \textbf{(A)}\ 22\qquad \textbf{(B)}\ 32\qquad \textbf{(C)}\ 34\qquad \textbf{(D)}\ 44\qquad \textbf{(E)}\ 50$
2019 India IMO Training Camp, P2
Let $ABC$ be a triangle with $\angle A=\angle C=30^{\circ}.$ Points $D,E,F$ are chosen on the sides $AB,BC,CA$ respectively so that $\angle BFD=\angle BFE=60^{\circ}.$ Let $p$ and $p_1$ be the perimeters of the triangles $ABC$ and $DEF$, respectively. Prove that $p\le 2p_1.$
2017 Harvard-MIT Mathematics Tournament, 2
Let $A$, $B$, $C$, $D$, $E$, $F$ be $6$ points on a circle in that order. Let $X$ be the intersection of $AD$ and $BE$, $Y$ is the intersection of $AD$ and $CF$, and $Z$ is the intersection of $CF$ and $BE$. $X$ lies on segments $BZ$ and $AY$ and $Y$ lies on segment $CZ$. Given that $AX = 3$, $BX = 2$, $CY = 4$, $DY = 10$, $EZ = 16$, and $FZ = 12$, find the perimeter of triangle $XYZ$.
2020 Turkey Team Selection Test, 2
$A_1A_2A_3A_4$ is a tangential quadrilateral with perimeter $p_1$ and sum of the diagonals $k_1$ .$B_1B_2B_3B_4$ is a tangential quadrilateral with perimeter $p_2$ and sum of the diagonals $k_2$ .Prove that $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$ are congruent squares if $$ p_1^2+p_2^2=(k_1+k_2)^2 $$
2015 Romania Team Selection Tests, 1
Let $ABC$ and $ABD$ be coplanar triangles with equal perimeters. The lines of support of the internal bisectrices of the angles $CAD$ and $CBD$ meet at $P$. Show that the angles $APC$ and $BPD$ are congruent.
1998 Putnam, 2
Given a point $(a,b)$ with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at $(a,b)$, one on the $x$-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.
V Soros Olympiad 1998 - 99 (Russia), 9.10
The bisector of angle $\angle BAC$ of triangle $ABC$ intersects arc $BC$ (not containing point $A$) of the circle circumscribed around this triangle at point $P$. Segment $AP$ is divided by side $BC$ in ratio $k$ (counting from vertex $A$). Find the perimeter of triangle $ABC$ if $BC = a$.
2015 AMC 10, 24
For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?
$\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$
2009 AIME Problems, 12
In right $ \triangle ABC$ with hypotenuse $ \overline{AB}$, $ AC \equal{} 12$, $ BC \equal{} 35$, and $ \overline{CD}$ is the altitude to $ \overline{AB}$. Let $ \omega$ be the circle having $ \overline{CD}$ as a diameter. Let $ I$ be a point outside $ \triangle ABC$ such that $ \overline{AI}$ and $ \overline{BI}$ are both tangent to circle $ \omega$. The ratio of the perimeter of $ \triangle ABI$ to the length $ AB$ can be expressed in the form $ \displaystyle\frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
1993 AMC 12/AHSME, 27
The sides of $\triangle ABC$ have lengths $6, 8$ and $10$. A circle with center $P$ and radius $1$ rolls around the inside of $\triangle ABC$, always remaining tangent to at least one side of the triangle. When $P$ first returns to its original position, through what distance has $P$ traveled?
[asy]
draw((0,0)--(8,0)--(8,6)--(0,0));
draw(Circle((4.5,1),1));
draw((4.5,2.5)..(5.55,2.05)..(6,1), EndArrow);
dot((0,0));
dot((8,0));
dot((8,6));
dot((4.5,1));
label("A", (0,0), SW);
label("B", (8,0), SE);
label("C", (8,6), NE);
label("8", (4,0), S);
label("6", (8,3), E);
label("10", (4,3), NW);
label("P", (4.5,1), NW);
[/asy]
$ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 14 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 17 $
2001 AMC 8, 16
A square piece of paper, 4 inches on a side, is folded in half vertically. Both layers are then cut in half parallel to the fold. Three new rectangles are formed, a large one and two small ones. What is the ratio of the perimeter of one of the small rectangles to the perimeter of the large rectangle?
[asy]
draw((0,8)--(0,0)--(4,0)--(4,8)--(0,8)--(3.5,8.5)--(3.5,8));
draw((2,-1)--(2,9),dashed);[/asy]
$ \text{(A)}\ \frac{1}{3}\qquad\text{(B)}\ \frac{1}{2}\qquad\text{(C)}\ \frac{3}{4}\qquad\text{(D)}\ \frac{4}{5}\qquad\text{(E)}\ \frac{5}{6} $
2000 IMO Shortlist, 5
Prove that there exist infinitely many positive integers $ n$ such that $ p \equal{} nr,$ where $ p$ and $ r$ are respectively the semiperimeter and the inradius of a triangle with integer side lengths.
1989 IMO Longlists, 49
Let $ t(n)$ for $ n \equal{} 3, 4, 5, \ldots,$ represent the number of distinct, incongruent, integer-sided triangles whose perimeter is $ n;$ e.g., $ t(3) \equal{} 1.$ Prove that
\[ t(2n\minus{}1) \minus{} t(2n) \equal{} \left[ \frac{6}{n} \right] \text{ or } \left[ \frac{6}{n} \plus{} 1 \right].\]
1966 IMO Longlists, 6
Let $m$ be a convex polygon in a plane, $l$ its perimeter and $S$ its area. Let $M\left( R\right) $ be the locus of all points in the space whose distance to $m$ is $\leq R,$ and $V\left(R\right) $ is the volume of the solid $M\left( R\right) .$
[i]a.)[/i] Prove that \[V (R) = \frac 43 \pi R^3 +\frac{\pi}{2} lR^2 +2SR.\]
Hereby, we say that the distance of a point $C$ to a figure $m$ is $\leq R$ if there exists a point $D$ of the figure $m$ such that the distance $CD$ is $\leq R.$ (This point $D$ may lie on the boundary of the figure $m$ and inside the figure.)
additional question:
[i]b.)[/i] Find the area of the planar $R$-neighborhood of a convex or non-convex polygon $m.$
[i]c.)[/i] Find the volume of the $R$-neighborhood of a convex polyhedron, e. g. of a cube or of a tetrahedron.
[b]Note by Darij:[/b] I guess that the ''$R$-neighborhood'' of a figure is defined as the locus of all points whose distance to the figure is $\leq R.$
2003 AMC 10, 7
How many non-congruent triangles with perimeter $ 7$ have integer side lengths?
$ \textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 3 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 5$
2005 AMC 8, 15
How many different isosceles triangles have integer side lengths and perimeter 23?
$ \textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11$
1988 National High School Mathematics League, 2
In $\triangle ABC$, $P,Q,R$ divides the perimeter of $\triangle ABC$ into three equal parts. $P,Q\in AB$. Prove that $\frac{S_{\triangle PQR}}{S_{\triangle ABC}}>\frac{2}{9}$.
2025 All-Russian Olympiad, 9.8
On the sides of triangle \( ABC \), points \( D_1, D_2, E_1, E_2, F_1, F_2 \) are chosen such that when going around the triangle, the points occur in the order \( A, F_1, F_2, B, D_1, D_2, C, E_1, E_2 \). It is given that
\[
AD_1 = AD_2 = BE_1 = BE_2 = CF_1 = CF_2.
\]
Prove that the perimeters of the triangles formed by the lines \( AD_1, BE_1, CF_1 \) and \( AD_2, BE_2, CF_2 \) are equal.
1957 Poland - Second Round, 2
Prove that if $ M $, $ N $, $ P $ are the feet of the altitudes of acute-angled triangle $ ABC $, then the ratio of the perimeter of triangle $ MNP $ to the perimeter of triangle $ ABC $ is equal to the ratio of the radius of the circle inscribed in triangle $ ABC $ to the radius of the circle circumscribed about triangle $ ABC $.
2012 Today's Calculation Of Integral, 858
On the plane $S$ in a space, given are unit circle $C$ with radius 1 and the line $L$. Find the volume of the solid bounded by the curved surface formed by the point $P$ satifying the following condition $(a),\ (b)$.
$(a)$ The point of intersection $Q$ of the line passing through $P$ and perpendicular to $S$ are on the perimeter or the inside of $C$.
$(b)$ If $A,\ B$ are the points of intersection of the line passing through $Q$ and pararell to $L$, then $\overline{PQ}=\overline{AQ}\cdot \overline{BQ}$.
2005 Romania Team Selection Test, 2
Let $ABC$ be a triangle, and let $D$, $E$, $F$ be 3 points on the sides $BC$, $CA$ and $AB$ respectively, such that the inradii of the triangles $AEF$, $BDF$ and $CDE$ are equal with half of the inradius of the triangle $ABC$. Prove that $D$, $E$, $F$ are the midpoints of the sides of the triangle $ABC$.
2005 France Team Selection Test, 2
Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle).
Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.
2011 AMC 12/AHSME, 22
Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$?
$ \textbf{(A)}\ \frac{1509}{8} \qquad
\textbf{(B)}\ \frac{1509}{32} \qquad
\textbf{(C)}\ \frac{1509}{64} \qquad
\textbf{(D)}\ \frac{1509}{128} \qquad
\textbf{(E)}\ \frac{1509}{256} $
2010 Germany Team Selection Test, 2
For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]